Updating search results...

Search Resources

389 Results

View
Selected filters:
  • MI.Math.Practice.MP.1 - Make sense of problems and persevere in solving them. Mathematically p...
  • MI.Math.Practice.MP.1 - Make sense of problems and persevere in solving them. Mathematically p...
Applications of Linear Functions
Read the Fine Print
Educational Use
Rating
0.0 stars

This final lesson in the unit culminates with the Go Public phase of the legacy cycle. In the associated activities, students use linear models to depict Hooke's law as well as Ohm's law. To conclude the lesson, students apply they have learned throughout the unit to answer the grand challenge question in a writing assignment.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Arabesque: Where Art Meets Mathematics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main objective of this lesson is to illustrate an important application of mathematics in practical life -- namely in art. Most of the pictures selected for this lesson are visible on the walls of Al-Hambra – Granada (Spain), which is one of the most important landmarks in the Islamic civilization. There are three educational goals for this lesson: (1) establishing the concept of isometries; (2) giving real-life examples of groups; (3) demonstrating the importance of matrices and their applications. As background for this lesson, students just need some familiarity with the concept of a group and a limited knowledge about matrices and the inverse of a non-singular matrix.

Subject:
Arts and Humanities
Mathematics
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Dr. Jawad Abuhlail
Date Added:
02/15/2018
Arbitrary Digits Numbers Up to 100000
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This short video and interactive assessment activity is designed to teach third graders about creating largest and smallest numbers given digits.

Subject:
Mathematics
Numbers and Operations
Material Type:
Assessment
Interactive
Lecture
Provider:
CK-12 Foundation
Provider Set:
CK-12 Elementary Math
Date Added:
04/03/2018
Archimedes' Principle, Pascal's Law and Bernoulli's Principle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Pascal's law, Archimedes' principle and Bernoulli's principle. Fundamental definitions, equations, practice problems and engineering applications are supplied. A PowerPoint® presentation, practice problems and grading rubric are provided.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Architects and Engineers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.

Subject:
Applied Science
Architecture and Design
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Sara Stemler
Date Added:
09/18/2014
Area of Squares and Rectangles
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This short video and interactive assessment activity is designed to teach third graders an overview of area of squares and rectangles - word problems.

Subject:
Mathematics
Measurement and Data
Material Type:
Assessment
Interactive
Lecture
Provider:
CK-12 Foundation
Provider Set:
CK-12 Elementary Math
Date Added:
04/03/2018
Arithmetic for College Students
Unrestricted Use
CC BY
Rating
0.0 stars

This course is an arithmetic course intended for college students, covering whole numbers, fractions, decimals, percents, ratios and proportions, geometry, measurement, statistics, and integers using an integrated geometry and statistics approach. The course uses the late integers model—integers are only introduced at the end of the course.

Subject:
Mathematics
Material Type:
Full Course
Textbook
Provider:
Lumen Learning
Provider Set:
Candela Courseware
Author:
David Lippman
Date Added:
02/16/2018
Arranging Numbers in Specific Orders
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This short video and interactive assessment activity is designed to teach third graders about arranging numbers in specific orders.

Subject:
Mathematics
Numbers and Operations
Material Type:
Assessment
Interactive
Lecture
Provider:
CK-12 Foundation
Provider Set:
CK-12 Elementary Math
Date Added:
04/03/2018
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Numbers and Operations
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Stephen M. Hou
Date Added:
02/15/2018
The Art of Counting, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The subject of enumerative combinatorics deals with counting the number of elements of a finite set. For instance, the number of ways to write a positive integer n as a sum of positive integers, taking order into account, is 2n-1. We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them. This is a subject which requires little mathematical background to reach the frontiers of current research. Students will therefore have the opportunity to do original research. It might be necessary to limit enrollment.

Subject:
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Stanley, Richard
Date Added:
01/01/2003
Attack of the Raging River
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the students will discover the relationship between an object's mass and the amount of space it takes up (its volume). The students will also learn about the concepts of displacement and density.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Bacteria Are Everywhere!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jasmin Hume
Date Added:
09/18/2014
Ben's Game
Unrestricted Use
CC BY
Rating
0.0 stars

This Nrich problem requires some simple knowledge of fractions and multiples and demands some strategic thinking. It may offer a good opportunity to compare methods between students - there isn't just one route to the solution. Note that there is no need to use algebra in this problem.

Subject:
Mathematics
Material Type:
Activity/Lab
Date Added:
06/17/2021
Biscuit Decorations
Unrestricted Use
CC BY
Rating
0.0 stars

This Nrich problem fits in well with counting and skip-counting (counting by twos etc.) and can be solved by physically modeling the biscuits and decorations with whatever objects are convenient. It is a good opportunity for children to choose the way they represent the problem in order to solve it. It may also be appropriate to introduce vocabulary such as "multiple".

Subject:
Mathematics
Material Type:
Activity/Lab
Date Added:
06/10/2021
Blended Learning Open Source Science or Math Studies (BLOSSOMS), Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" BLOSSOMS stands for Blended Learning Science or Math Studies. It is a project sponsored by MIT LINC (Learning International Networks Consortium) a consortium of educators from around the world who are interested in using distance and e-Learning technologies to help their respective countries increase access to quality education for a larger percentage of the population.BLOSSOMS Online"

Subject:
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Larson, Richard C.
Date Added:
04/07/2020
Bone Mineral Density Math and Beer's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

Students revisit the mathematics required to find bone mineral density, to which they were introduced in lesson 2 of this unit. They learn the equation to find intensity, Beer's law, and how to use it. Then they complete a sheet of practice problems that use the equation.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Bone Mineral Density and Logarithms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine an image produced by a cabinet x-ray system to determine if it is a quality bone mineral density image. They write in their journals about what they need to know to be able to make this judgment. Students learn about what bone mineral density is, how a BMD image can be obtained, and how it is related to the x-ray field. Students examine the process used to obtain a BMD image and how this process is related to mathematics, primarily through logarithmic functions. They study the relationship between logarithms and exponents, the properties of logarithms, common and natural logarithms, solving exponential equations and Beer's law.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
The Broken Stick Experiment: Triangles, Random Numbers and Probability
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video is designed to develop critical thinking in students by encouraging them to work from basic principles to solve a puzzling mathematics problem that contains uncertainty. Materials for in-class activities include: a yard stick, a meter stick or a straight branch of a tree; a saw or equivalent to cut the stick; and a blackboard or equivalent. In this video lesson, during in-class sessions between video segments, students will learn among other things: 1) how to generate random numbers; 2) how to deal with probability; and 3) how to construct and draw portions of the X-Y plane that satisfy linear inequalities.

Subject:
Mathematics
Measurement and Data
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Richard C. Larson
Date Added:
02/15/2018