Search Resources

24 Results

View
Selected filters:
  • MI.ELA-Literacy.RST.6-8.7
6.3 Weather, Climate & Water Cycling
Unrestricted Use
CC BY
Rating

This unit on weather, climate, and water cycling is broken into four separate lesson sets. In the first two lesson sets, students explain small-scale storms. In the third and fourth lesson sets, students explain mesoscale weather systems and climate-level patterns of precipitation. Each of these two parts of the unit is grounded in a different anchoring phenomenon.

The unit starts out with anchoring students in the exploration of a series of videos of hailstorms from different locations across the country at different times of the year. The videos show that pieces of ice of different sizes (some very large) are falling out of the sky, sometimes accompanied by rain and wind gusts, all on days when the temperature of the air outside remained above freezing for the entire day. These cases spark questions and ideas for investigations, such as investigating how ice can be falling from the sky on a warm day, how clouds form, why some clouds produce storms with large amounts of precipitation and others don’t, and how all that water gets into the air in the first place.

The second half of the unit is anchored in the exploration of a weather report of a winter storm that affected large portions of the midwestern United States. The maps, transcripts, and video that students analyze show them that the storm was forecasted to produce large amounts of snow and ice accumulation in large portions of the northeastern part of the country within the next day. This case sparks questions and ideas for investigations around trying to figure out what could be causing such a large-scale storm and why it would end up affecting a different part of the country a day later.

Subject:
Environmental Science
Atmospheric Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Student Guide
Teaching/Learning Strategy
Unit of Study
Author:
Assessment Specialist Colleen O’Brien
Boston College Emily Harris
BSCS Science Learning Audrey Mohan
BSCS Science Learning Dawn Novak
BSCS Science Learning Katie Van Horne
BSCS Science Learning Lindsey Mohan
BSCS Science Learning Tracey Ramirez
Columbia University Elisabeth Cohen
Indian Woods Middle School Ann Rivet
Indian Woods Middle School Whitney Smith
Lombard Middle School Vanessa Hannana
Michael Novak
Northwestern University Renee Affolter
Williston Central School Heather Galbreath
Date Added:
08/04/2020
7.3 Metabolic Reactions
Unrestricted Use
CC BY
Rating

This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why.

Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected.

Subject:
Health, Medicine and Nursing
Anatomy/Physiology
Material Type:
Activity/Lab
Case Study
Data Set
Lecture Notes
Lesson Plan
Reading
Student Guide
Unit of Study
Author:
Abingdon-Avon High School Betty Stennett
Assessment Specialist Kelsey Edwards
BSCS Science Learning Jamie Noll
BSCS Science Learning Katie Van Horne
BSCS Science Learning Lindsey Mohan
Charles A. Dana Center at University of Texas Austin Heather Galbreath
John D. O’Bryant School of Mathematics and Science Nicole Vick
Lombard Middle School Michael Clinchot
Maine Mathematics and Science Alliance Kathryn Fattalah
Northwestern University Barbara Hug
Northwestern University Barbara Taylor
Northwestern University Kate Cook-Whitt
Northwestern University Michael Novak
Tara McGill
The Nora Project Emily Harris
Date Added:
08/05/2020
7.4 Matter Cycling & Photosynthesis
Unrestricted Use
CC BY
Rating

This unit on matter cycling and photosynthesis begins with students reflecting on what they ate for breakfast. Students are prompted to consider where their food comes from and consider which breakfast items might be from plants. Then students taste a common breakfast food, maple syrup, and see that according to the label, it is 100% from a tree.

Based on the preceding unit, students argue that they know what happens to the sugar in syrup when they consume it. It is absorbed into the circulatory system and transported to cells in their body to be used for fuel. Students explore what else is in food and discover that food from plants, like bananas, peanut butter, beans, avocado, and almonds, not only have sugars but proteins and fats as well. This discovery leads them to wonder how plants are getting these food molecules and where a plant’s food comes from.

Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.

Subject:
Ecology
Forestry and Agriculture
Hydrology
Material Type:
Activity/Lab
Module
Unit of Study
Author:
Assessment Specialist Kelsey Edwards
BSCS Science Learning Meghan McCleary
BSCS Science Learning Tyler Scaletta
Chicago Public Schools Katie Van Horne
Field Test Unit Lead and Reviewer
Hugh B. Bain Middle School Elizabeth Xeng de los Santos
James Ward School Mary Colannino
Jamie Noll
Maine Mathematics and Science Alliance Emily Harris
Northwestern University Christina Murzynski
Northwestern University Dawn Novak
Northwestern University Kate Cook-Whitt
Northwestern University Misty Richmond
Northwestern University Tara McGill
The Nora Project Michael Novak
University of California – Davis Cindy Passmore
University of Illinois Extension Katy Fattaleh
University of Illinois Extension Sue Gasper
University of Nevada – Reno Chris Griesemer
Date Added:
08/04/2020
8.2 Sound Waves
Unrestricted Use
CC BY
Rating

In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.

They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Data Set
Diagram/Illustration
Lesson Plan
Reading
Simulation
Student Guide
Unit of Study
Author:
Boston College Susan Kowalski
BSCS Science Learning Gail Housman
David Wooster Middle School Sara Ryner
Ideal Elementary School Jamie Noll
North Shore Country Day School Michael Novak
Northwestern University Chris Newlan
Northwestern University Tyler Scaletta
Renee Affolter
United Junior High School Katie Van Horne
Date Added:
08/05/2020
Afterimage
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this activity about light and perception, learners discover how a flash of light can create a lingering image called an "afterimage" on the retina of the eye. Learners will be surprised when they continue to see an image of a bright object after staring at it and looking away. Use this activity to introduce learners to principles of optics and perception as well as to explain why the full moon often appears larger when it is on the horizon than when it is overhead. This lesson guide also includes a few extensions like how to take "afterimage photographs."

Subject:
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
The Amazing Red Planet
Read the Fine Print
Educational Use
Rating

The purpose of this lesson is to introduce students to the planet Mars. This lesson will begin by discussing the location and size of Mars relative to Earth, as well as introduce many interesting facts about this red planet. Next, the history of Martian exploration is reviewed and students discover why scientists are so interested in studying this mysterious planet. The lesson concludes with students learning about future plans to visit Mars.

Subject:
Engineering
Astronomy
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Bringing Algorithms into the Classroom
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Students will take a sequence of events or steps for some process and create an algorithm. This could apply to any content area. They will display the algorithm in flowchart form. This activity can be modified for all grade levels and content areas.

Subject:
Computer Science
Arts and Humanities
English Language Arts
Life Science
Mathematics
Physical Science
Material Type:
Activity/Lab
Author:
Cheryl Wilson
Date Added:
08/28/2020
CTE Health Sciences: BMI Calculations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This task was developed by high school and postsecondary mathematics and health sciences educators, and validated by content experts in the Common Core State Standards in mathematics and the National Career Clusters Knowledge & Skills Statements. It was developed with the purpose of demonstrating how the Common Core and CTE Knowledge & Skills Statements can be integrated into classroom learning - and to provide classroom teachers with a truly authentic task for either mathematics or CTE courses.

Subject:
Health, Medicine and Nursing
Algebra
Ratios and Proportions
Statistics and Probability
Material Type:
Activity/Lab
Lesson Plan
Author:
National Association of State Directors of Career Technical Education Consortium
Date Added:
08/06/2020
Can You Take the Pressure?
Read the Fine Print
Educational Use
Rating

This lesson introduces students to the concept of air pressure. Students will explore how air pressure creates force on an object. They will study the relationship between air pressure and the velocity of moving air.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Clipbirds
Read the Fine Print
Rating

This variation on the classic bird beak activity demonstrates variation of beak size within a population and shows how the proportion of big-, medium-, and small-beaked birds changes in response to the available types of food. The “birds” with binder clip “beaks” live in Clipland where the large population becomes divided into two smaller populations by a mountain range. Popcorn, lima beans and marbles are the three types of food available in the two areas. Food is spread out for the birds to eat and then after 15 seconds it is counted to see whether birds have gathered enough food to survive. The big billed birds need to eat more than the medium and small billed birds to survive and each bird needs to eat more than the minimum amount of food for survival to be able to reproduce. Four years pass during the simulation and students are asked to describe what happened to the Clipbird populations and what they think caused the changes. A link to Rosemary and Peter Grant’s research on finch populations in the Galapagos is identified for those teachers who want to connect the simulation to a real life example.

Subject:
Biology
Genetics
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
UC Museum of Paleontology
Provider Set:
NGSS@NSTA
Author:
Al Janulaw, Judy Scotchmoor
Date Added:
02/16/2018
Continental Climate and Oceanic Climate
Unrestricted Use
CC BY
Rating

This activity proposes different small experiments and discussions to show that in the summer it is cooler by the sea than on the land and that water cools off more slowly than soil.

Subject:
Physical Science
Oceanography
Physical Geography
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Leiden Observatory
Date Added:
01/01/2016
Dueling Mandates
Read the Fine Print
Rating

Using dilemma cards describing some of the issues affecting Yellowstone National Park, students work in small groups to consider management issues that meet both of the conflicting mandates that the National Park Service must follow." There are 6 dilemmas that the class can be broken into groups to research. These dilemmas include wolf reintroduction, bison diseases, non-native trout, wildfires, resource sharing, and winter use of park lands. After researching each dilemma, students will make a pros/cons list, a final decision, and a brief presentation to the class. While the website recommends completing this lesson "after the expedition" to Yellowstone park, it can be done without visiting the park.

Subject:
Biology
Genetics
Material Type:
Lesson Plan
Provider:
California Foundation for Agriculture in the Classroom
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/16/2018
Earth's Place in the Universe
Unrestricted Use
CC BY
Rating

In this unit on Earth's Place in the Universe, 6th grade students will delve deeply into the universe and its stars as well as our solar system and Earth's place within it. 6th grade students will be able to develop and use a model of the Sun-Earth-Moon system in order to observe, describe, predict and explain the cyclical patterns of the lunar phases, solar and lunar eclipses, and the seasons.

 

The first part of this unit will focus on the universe at its stars. Students will be able to explain that the Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies.  Students will be able to understand the fact that the motion of the sun, the moon and stars in the sky can be observed, described, predicted and explained with models. This model of the solar system can explain tides, eclipses of the sun and moon, and the motion of the planets in the sky relative to the stars. Earth's spinning axis is fixed in direction over the short term but tilted relative to its orbit around the sun. The season are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

*This unit will end with the patterns of eclipses. The gravitational pull of the Sun and how it holds celestial objects in orbit, as well as causes the tides will occur after, but are not included in this document.

Subject:
Physical Science
Material Type:
Unit of Study
Provider:
Michigan Virtual
Author:
Jessica Zavodnik
Date Added:
08/27/2016
How a Faucet Works
Read the Fine Print
Educational Use
Rating

Students learn about the underlying engineering principals in the inner workings of a simple household object -- the faucet. Students use the basic concepts of simple machines, force and fluid flow to describe the path of water through a simple faucet. Lastly, they translate this knowledge into thinking about how different designs of faucets also use these same concepts.

Subject:
Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Sheridan
Jackie Sullivan
Janet Yowell
Malinda Schaefer Zarske
Tod Sullivan
Date Added:
09/18/2014
Oso Mudslide - Before and After
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this lesson, students take on the role of a county official tasked with spreading awareness of the disaster. Using imagery of the affected area, they create a web mapping application that allows users to easily compare the area before and after the disaster. Users should also to be able to measure the extent of the impact. Lastly, the app should link to additional material about the landslide.

Subject:
Applied Science
Environmental Science
Material Type:
Activity/Lab
Provider:
Michigan Virtual
Author:
GRACE Project
Date Added:
12/27/2016
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Engineering
Biology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Population Growth in Yeasts
Read the Fine Print
Educational Use
Rating

This lesson is the second of two that explore cellular respiration and population growth in yeasts. In the first lesson, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arose during the first lesson and its associated activity, in this lesson students work in small groups to design experiments that will determine how environmental factors affect yeast population growth.

Subject:
Engineering
Biology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Pupil
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this activity, learners explore their eye pupils and how they change. Learners use a magnifying glass, mirror, and flashlight to observe how their pupil changes size in response to changes in lighting. Learners also experiment to determine how light shining in one eye affects the size of the pupil in their other eye. This resource guide includes background information about pupils and why they change as well as information related to emotional stimuli, involuntary reflexes, and photography.

Subject:
Anatomy/Physiology
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
A Recipe for Traits
Read the Fine Print
Rating

Students create and decode DNA for man’s best friend to observe how variations in DNA lead to the inheritance of different traits. Strips of paper that represent DNA are randomly selected and used to assemble the dog's DNA. Students read the DNA and create a drawing of their pet, and compare it with others in the class to check for similarities and differences.

Subject:
Biology
Genetics
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
University of Utah
Provider Set:
NGSS@NSTA
University of Utah Genetic Science Learning Center
Date Added:
02/16/2018