Search Resources

17 Results

View
Selected filters:
  • MI.SS.HS.LS2.5
Advanced Soil Mechanics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analyses; and laboratory and field methods for evaluation of soil properties in design practice.

Subject:
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Jen, Lucy
Date Added:
01/01/2004
Aerospace Biomedical and Life Support Engineering, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Fundamentals of human performance, physiology, and life support impacting engineering design and aerospace systems. Topics include: effects of gravity on the muscle, skeletal, cardiovascular, and neurovestibular systems; human/pilot modeling and human/machine design; flight experiment design; and life support engineering for extravehicular activity (EVA). Case studies of current research are presented. Assignments include a design project, quantitative homework sets, and quizzes emphasizing engineering and systems aspects.

Subject:
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Newman, Dava J.
Date Added:
01/01/2006
Air Quality Unit - Lesson 1 : What Gets Into the Air?
Conditional Remix & Share Permitted
CC BY-NC
Rating

The lesson develops the basic ideas that combustion activities are a major source of air pollution and that the products of combustion include particles (soot) and gases such as
carbon monoxide and carbon dioxide.

Subject:
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Michigan Geographic Alliance
Date Added:
08/28/2020
The Biology of Aging: Age-Related Diseases and Interventions, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Aging involves an intrinsic and progressive decline in function that eventually will affect us all. While everyone is familiar with aging, many basic questions about aging are mysterious. Why are older people more likely to experience diseases like cancer, stroke, and neurodegenerative disorders? What changes happen at the molecular and cellular levels to cause the changes that we associate with old age? Is aging itself a disease, and can we successfully intervene in the aging process?This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Health, Medicine and Nursing
Biology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bell, Eric L.
Lamming, Dudley W.
Date Added:
01/01/2011
Dynamics of Complex Systems: Complexity in Ecology, Spring 2000
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

An introduction to theoretical studies of systems of many interacting components, the individual dynamics of which may be simple, but the collective dynamics of which are often nonlinear and analytically intractable. Topics vary from year to year. Format includes both pedagogical lectures and round-table reviews of current literature. Subjects of interest include: problems in natural science (e.g., geology, ecology, and biology) where quantitative theory is still in development; problems in physics, such as turbulence, that demonstrate powerful concepts such as scaling and universality; and modern computational methods for the simulation and study of such problems. Discussions in context of contemporary experimental or observational data.

Subject:
Ecology
Atmospheric Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Rothman, Daniel
Date Added:
01/01/2000
The Ecological Cost of Dinner
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This lesson is about the flow of energy in ecosystems. The setting is Plimoth Plantation, a living history museum in Plymouth, Massachusetts, USA, where students will learn about the first Thanksgiving meal in America, celebrated in 1621 by early American settlers and Wampanoag Indians. By examining this meal and comparing it to a modern day Thanksgiving celebration, students will be able to explore the way in which food energy moves and is transformed in an ecosystem. The learning goals focus on the movement of energy from one feeding level to the next within a food web, the way in which energy changes form, and the inefficiency of energy transfer, which in turn affects the availability of food energy for organisms at the highest feeding level. The lesson is directed at high school level biology students. Students should be familiar already with food webs, food chains, and trophic (feeding) levels. They should also be familiar with the general equations for photosynthesis (CO2 + H2O => C6H12O6) and cell respiration (C6H12O6 => CO2 + H2O), and understand the basic purpose of these processes in nature. This lesson can be completed during one long classroom period, or can be divided over two or more class meetings. The duration of the lesson will depend on prior knowledge of the students and on the amount of time allotted for student discussion. There are no supplies required for this lesson other than the downloadable worksheets (accessed on this BLOSSOMS site), paper and some glue or tape.

Subject:
Life Science
Ecology
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Leslie Reinherz
Date Added:
02/15/2018
The Ecological Cost of Dinner
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This lesson is about the flow of energy in ecosystems. The setting is Plimoth Plantation, a living history museum in Plymouth, Massachusetts, USA, where students will learn about the first Thanksgiving meal in America, celebrated in 1621 by early American settlers and Wampanoag Indians. By examining this meal and comparing it to a modern day Thanksgiving celebration, students will be able to explore the way in which food energy moves and is transformed in an ecosystem. The learning goals focus on the movement of energy from one feeding level to the next within a food web, the way in which energy changes form, and the inefficiency of energy transfer, which in turn affects the availability of food energy for organisms at the highest feeding level. The lesson is directed at high school level biology students. Students should be familiar already with food webs, food chains, and trophic (feeding) levels. They should also be familiar with the general equations for photosynthesis (CO2 + H2O => C6H12O6) and cell respiration (C6H12O6 => CO2 + H2O), and understand the basic purpose of these processes in nature. This lesson can be completed during one long classroom period, or can be divided over two or more class meetings. The duration of the lesson will depend on prior knowledge of the students and on the amount of time allotted for student discussion. There are no supplies required for this lesson other than the downloadable worksheets (accessed on this BLOSSOMS site), paper and some glue or tape.

Subject:
Life Science
Ecology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Leslie Reinherz
Date Added:
04/07/2020
Ecology I: The Earth System, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

" We will cover fundamentals of ecology, considering Earth as an integrated dynamic system. Topics include coevolution of the biosphere, geosphere, atmosphere and oceans; photosynthesis and respiration; the hydrologic, carbon and nitrogen cycles. We will examine the flow of energy and materials through ecosystems; regulation of the distribution and abundance of organisms; structure and function of ecosystems, including evolution and natural selection; metabolic diversity; productivity; trophic dynamics; models of population growth, competition, mutualism and predation. This course is designated as Communication-Intensive; instruction and practice in oral and written communication provided. Biology is a recommended prerequisite."

Subject:
Ecology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Penny
DeLong, Edward
Date Added:
01/01/2009
Fueling Sustainability: Engineering Microbial Systems for Biofuel Production, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Engineering
Biology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
O'Malley, Michelle
Date Added:
01/01/2011
Geobiology, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.

Subject:
Biology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bosak, Tanja
Summons, Roger
Date Added:
01/01/2009
ISKME's Sun Curve Design Challenge Project Wiki Page
Unrestricted Use
CC BY
Rating

This wiki page documents the Sun Curve Design Challenge, inspired by the "Sun Curve" aquaponic garden sculpture to challenge teachers and students to produce new OER materials and incorporate green design thinking into the classroom.

Subject:
Biology
Material Type:
Activity/Lab
Homework/Assignment
Lesson Plan
Provider:
ISKME
Date Added:
02/16/2018
Leaf Photosynthesis NetLogo Model
Read the Fine Print
Rating

This Java-based NetLogo model allows students to investigate the chemical and energy inputs and outputs of photosynthesis through an interactive simulation. The simulation is a visual, conceptual model of photosynthesis and does not generate quantitative data. The central concept in the model is the role of chlorophyll in capturing light energy, and this concept is presented without delving into the biochemical details of the photosynthetic reactions. This allows students to focus on the core idea that photosynthesis transforms light energy into chemical energy. Along with exploring the basic process of photosynthesis, students can investigate the effects of light intensity, the day-night cycle (assuming the most common C3 photosynthetic pathway), CO2 concentration, and water availability on the rate of sugar production during photosynthesis. The model highlights the cycling within the chloroplasts between excited and unexcited states as energy is captured and released by chlorophyll. The lesson is written as an introductory learning experience, beginning with the question: What is needed for photosynthesis in a leaf, and what is produced? This resource is best suited as one in a series of learning experiences that either reinforce or extend the concepts addressed here. The model is embedded within an electronic form that provides instructions and guiding questions. Teachers and students should note that the electronic form does not save user data. An important limitation is that the model relies heavily on students’ visual perception, and this may pose a barrier for some students.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
02/16/2018
Life on the Moon
Read the Fine Print
Educational Use
Rating

In this lesson, students learn about the physical properties of the Moon. They compare these to the properties of the Earth to determine how life would be different for astronauts living on the Moon. Using their understanding of these differences, they are asked to think about what types of products engineers would need to design for us to live comfortably on the Moon.

Subject:
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Jane Evenson
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
09/18/2014
OpenStax AP Biology
Unrestricted Use
CC BY
Rating

Biology for AP® Courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.

Subject:
Biology
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
CA John Eggebrecht
Julianne Zedalis
Yael Avissar
Date Added:
05/30/2018
Survival in Extreme Conditions: The Bacterial Stress Response, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Bacteria survive in almost all environments on Earth, including some considered extremely harsh. From the steaming hot springs of Yellowstone to the frozen tundra of the arctic to the barren deserts of Chile, microbes have been found thriving. Their tenacity to survive in such extreme and varied conditions allows them to play fundamental roles in global nutrient cycling. Microbes also cause a wide range of human diseases and can survive inhospitable conditions found in the human body. In this course, we will examine the molecular systems that bacteria use to adapt to changes in their environment. We will consider stresses commonly encountered, such as starvation, oxidative stress and heat shock, and also discuss how the adaptive responses affect the evolution of the bacteria. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Peterson, Celeste
Date Added:
01/01/2010
What Do Bread and Beer Have in Common?
Read the Fine Print
Educational Use
Rating

Students are presented with information that will allow them to recognize that yeasts are unicellular organisms that are useful to humans. In fact, their usefulness is derived from the contrast between the way yeast cells and human cells respire. Specifically, while animal cells derive energy from the combination of oxygen and glucose and produce water and carbon dioxide as by-products, yeasts respire without oxygen. Instead, yeasts break glucose down and produce alcohol and carbon dioxide as their by-products. The lesson is also intended to provoke questions from students about the effects of alcohol on the human body, to which the teacher can provide objective answers.

Subject:
Engineering
Biology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014