All resources in High School Science

Your Sense of Taste

(View Complete Item Description)

Think of some of your favorite tastes: savory Thanksgiving turkey, buttery mashed potatoes, tangy cranberry sauce, and warmly spiced pumpkin pie. We perceive food's complex, layered flavors through the work of five* types of receptors on our tongues—those that detect either sweet, sour, salty, bitter, and umami (savory). These receptors bind to chemicals in our food and transmit the information about the chemicals to our brains, resulting in a healthy appreciation for the nuances of chocolate, coffee, strawberries, and more.

Material Type: Lesson Plan

Population Dynamics

(View Complete Item Description)

Compare country-age structures to long-term population growth. GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.

Material Type: Lesson

Author: GRACE Project

Introduction to Chemistry

(View Complete Item Description)

his is a complete course in chemical stoichiometry, which is a set of tools chemists use to count molecules and determine the amounts of substances consumed and produced by reactions. The course is set in a scenario that shows how stoichiometry calculations are used in real-world situations. The list of topics (see below) is similar to that of a high school chemistry course, although with a greater focus on reactions occurring in solution and on the use of the ideas to design and carry out experiments. Topics covered include: Dimensional Analysis, the Mole, Empirical Formulas, Limiting Reagents, Titrations, Reactions Involving Mixtures.

Material Type: Assessment, Full Course, Interactive, Lecture, Reading

Introductory Chemistry

(View Complete Item Description)

This survey should give you enough knowledge to appreciate the impact of chemistry in everyday life and, if necessary, prepare you for additional instruction in chemistry. Throughout each chapter, I present two features that reinforce the theme of the textbook—that chemistry is all around you. The first is a feature titled, appropriately, “Chemistry Is Everywhere.” Chemistry Is Everywhere” focuses on the personal hygiene products that you may use every morning: toothpaste, soap, and shampoo, among others. These products are chemicals, aren’t they? Ever wonder about the chemical reactions that they undergo to give you clean and healthy teeth or shiny hair? I will explore some of these chemical reactions in future chapters. But this feature makes it clear that chemistry is, indeed, everywhere. The other feature focuses on chemistry that you likely indulge in every day: eating and drinking. In the “Food and Drink App,” I discuss how the chemistry of the chapter applies to things that you eat and drink every day. Carbonated beverages depend on the behavior of gases, foods contain acids and bases, and we actually eat certain rocks. (Can you guess which rocks without looking ahead?) Cooking, eating, drinking, and metabolism—we are involved with all these chemical processes all the time. These two features allow us to see the things we interact with every day in a new light—as chemistry.

Material Type: Textbook

Author: David W. Ball

Kitchen Chemistry, Spring 2009

(View Complete Item Description)

" This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes."

Material Type: Full Course

Author: Christie, Patricia

Electroscope

(View Complete Item Description)

This activity from the Exploratorium provides instructions to build an electroscope, a device that detects electrical charge. Common, inexpensive materials including film canisters, 3-M Scotch Magic™ Tape, and a plastic comb are used to show the attractions and repulsions between positively and negatively charged objects. The site also provides an explanation of the results and suggestions for extension activities.

Material Type: Activity/Lab

Bicycle-Wheel Gyro

(View Complete Item Description)

In this activity, a spinning bicycle wheel resists efforts to tilt it and point the axle in a new direction. Learners use the bicycle wheel like a giant gyroscope to explore angular momentum and torque. Learners can participate in the assembly of the Bicycle Wheel Gyro or use a preassembled unit to explore these concepts and go for an unexpected spin!

Material Type: Activity/Lab

Polarized Sunglasses

(View Complete Item Description)

In this activity, learners explore how polarizing sunglasses can help diminish road glare. By rotating a pair of polarizing sunglass lenses or other polarizing materials, learners will discover that some angles are better at reducing glare than others. Learners observe light from the sky, reflected from a mirror, or reflected from the surface of a pond. Use this activity to introduce learners to principles of light and polarization.

Material Type: Activity/Lab

Benham's Disk

(View Complete Item Description)

In this optics activity, learners discover that when they rotate a special black and white pattern called a Benham's Disk, it produces the illusion of colored rings. Learners experiment with the speed of rotation and direction of rotation to observe varying patterns. Use this activity to explain to learners how our eyes detect color and how different color receptors in the eye respond at different rates.

Material Type: Activity/Lab

Authors: California Department of Education, Don Rathjen, National Science Foundation, NEC Foundation of America, The Exploratorium

ATP: The Fuel of Life

(View Complete Item Description)

The goal of this lesson is to introduce students who are interested in human biology and biochemistry to the subtleties of energy metabolism (typically not presented in standard biology and biochemistry textbooks) through the lens of ATP as the primary energy currency of the cell. Avoiding the details of the major pathways of energy production (such as glycolysis, the citric acid cycle, and oxidative phosphorylation), this lesson is focused exclusively on ATP, which is truly the fuel of life. Starting with the discovery and history of ATP, this lesson will walk the students through 8 segments (outlined below) interspersed by 7 in-class challenge questions and activities, to the final step of ATP production by the ATP synthase, an amazing molecular machine. A basic understanding of the components and subcellular organization (e.g. organelles, membranes, etc.) and chemical foundation (e.g. biomolecules, chemical equilibrium, biochemical energetics, etc.) of a eukaryotic cell is a desired prerequisite, but it is not a must. Through interactive in-class activities, this lesson is designed to spark the students’ interest in biochemistry and human biology as a whole, but could serve as an introductory lesson to teaching advanced concepts of metabolism and bioenergetics in high school depending on the local science curriculum. No supplies or materials are needed.

Material Type: Lecture

Author: Christian Schubert

Body Circulation

(View Complete Item Description)

Students are introduced to the circulatory system, the heart, and blood flow in the human body. Through guided pre-reading, during-reading and post-reading activities, students learn about the circulatory system's parts, functions and disorders, as well as engineering medical solutions. By cultivating literacy practices as presented in this lesson, students can improve their scientific and technological literacy.

Material Type: Activity/Lab, Lesson Plan

Authors: Denise W. Carlson, Jay Shah, Malinda Schaefer Zarske, Todd Curtis