In this task, students can see that if the price level increases …
In this task, students can see that if the price level increases and peopleŐs incomes do not increase, they arenŐt able to purchase as many goods and services; in other words, their purchasing power decreases.
In this task students use different representations to analyze the relationship between …
In this task students use different representations to analyze the relationship between two quantities and to solve a real world problem. The situation presented provides a good opportunity to make connections between the information provided by tables, graphs and equations.
One common mistake students make when dividing fractions using visuals is the …
One common mistake students make when dividing fractions using visuals is the confusion between remainder and the fractional part of a mixed number answer.
This purpose of this task is to help students see two different …
This purpose of this task is to help students see two different ways to look at percentages both as a decrease and an increase of an original amount. In addition, students have to turn a verbal description of several operations into mathematical symbols.
This task asks students to find equivalent expressions by visualizing a familiar …
This task asks students to find equivalent expressions by visualizing a familiar activity involving distance. The given solution shows some possible equivalent expressions, but there are many variations possible.
In this task students are asked to write an equation to solve …
In this task students are asked to write an equation to solve a real-world problem. There are two natural approaches to this task. In the first approach, students have to notice that even though there is one variable, namely the number of firefighters, it is used in two different places. In the other approach, students can find the total cost per firefighter and then write the equation.
This task is the first in a series of three tasks that …
This task is the first in a series of three tasks that use inequalities in the same context at increasing complexity in 6th grade, 7th grade and in HS algebra. Students write and solve inequalities, and represent the solutions graphically.
This task provides a context for some of the questions asked in …
This task provides a context for some of the questions asked in "6.NS Multiples and Common Multiples." A scaffolded version of this task could be adapted into a teaching task that could help motivate the need for the concept of a common multiple.
This series of 5 word problems lead up to the final problem. …
This series of 5 word problems lead up to the final problem. Most students should be able to answer the first two questions without too much difficulty. The decimal numbers may cause some students trouble, but if they make a drawing of the road that the girls are riding on, and their positions at the different times, it may help. The third question has a bit of a challenge in that students won't land on the exact meeting time by making a table with distance values every hour. The fourth question addresses a useful concept for problems involving objects moving at different speeds which may be new to sixth grade students.
While students need to be able to write sentences describing ratio relationships, …
While students need to be able to write sentences describing ratio relationships, they also need to see and use the appropriate symbolic notation for ratios. If this is used as a teaching problem, the teacher could ask for the sentences as shown, and then segue into teaching the notation. It is a good idea to ask students to write it both ways (as shown in the solution) at some point as well.
The first of these word problems is a multiplication problem involving equal-sized …
The first of these word problems is a multiplication problem involving equal-sized groups. The next two reflect the two related division problems, namely, "How many groups?" and "How many in each group?"
The purpose of this task is to show three problems that are …
The purpose of this task is to show three problems that are set in the same kind of context, but the first is a straightforward multiplication problem while the other two are the corresponding "How many groups?" and "How many in each group?" division problems.
This 25-day module builds directly on students work with multiplication and division …
This 25-day module builds directly on students work with multiplication and division in Module 1. Module 3 extends the study of factors from 2, 3, 4, 5, and 10 to include all units from 0 to 10, as well as multiples of 10 within 100. Similar to the organization of Module 1, the introduction of new factors in Module 3 spreads across topics. This allows students to build fluency with facts involving a particular unit before moving on. The factors are sequenced to facilitate systematic instruction with increasingly sophisticated strategies and patterns.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.