The primary purpose of this task is to elicit common misconceptions that …
The primary purpose of this task is to elicit common misconceptions that arise when students try to model situations with linear functions. This task, being multiple choice, could also serve as a quick assessment to gauge a class' understanding of modeling with linear functions.
The coffee cooling experiment is a popular example of an exponential model …
The coffee cooling experiment is a popular example of an exponential model with immediate appeal. The model is realistic and provides a good context for students to practice work with exponential equations.
The primary purpose of this task is to illustrate that the domain …
The primary purpose of this task is to illustrate that the domain of a function is a property of the function in a specific context and not a property of the formula that represents the function. Similarly, the range of a function arises from the domain by applying the function rule to the input values in the domain. A second purpose would be to illicit and clarify a common misconception, that the domain and range are properties of the formula that represent a function.
This task assumes students have an understanding of the relationship between functions …
This task assumes students have an understanding of the relationship between functions and equations. Using this knowledge, the students are prompted to try to solve equations in order to find the inverse of a function given in equation form: when no such solution is possible, this means that the function does not have an inverse.
The purpose of this task is to investigate the meaning of the …
The purpose of this task is to investigate the meaning of the definition of function in a real-world context where the question of whether there is more than one output for a given input arises naturally. In more advanced courses this task could be used to investigate the question of whether a function has an inverse.
This task is designed to get at a common student confusion between …
This task is designed to get at a common student confusion between the independent and dependent variables. This confusion often arises in situations like (b), where students are asked to solve an equation involving a function, and confuse that operation with evaluating the function.
In this task students construct and compare linear and exponential functions and …
In this task students construct and compare linear and exponential functions and find where the two functions intersect. One purpose of this task is to demonstrate that exponential functions grow faster than linear functions even if the linear function has a higher initial value and even if we increase the slope of the line. This task could be used as an introduction to this idea.
In this lesson, through various examples and activities, exponential growth and polynomial …
In this lesson, through various examples and activities, exponential growth and polynomial growth are compared to develop an insight about how quickly the number can grow or decay in exponentials. A basic knowledge of scientific notation, plotting graphs and finding intersection of two functions is assumed.
Precalculus (was College Algebra) is an introductory text. The material is presented …
Precalculus (was College Algebra) is an introductory text. The material is presented at a level intended to prepare students for Calculus while also giving them relevant mathematical skills that can be used in other classes. The authors describe their approach as "Functions First," believing introducing functions first will help students understand new concepts more completely. Each section includes homework exercises, and the answers to most computational questions are included in the text (discussion questions are open-ended). Graphing calculators are used sparingly and only as a tool to enhance the Mathematics, not to replace it. Note: this book was updated on the BC Open textbook Project site on February, 17, 2015 to include the version of the textbook with chapters on Trigonometry.
In this task students are asked to analyze a function and its …
In this task students are asked to analyze a function and its inverse when the function is given as a table of values. In addition to finding values of the inverse function from the table, they also have to explain why the given function is invertible.
This task requires interpreting a function in a non-standard context. While the …
This task requires interpreting a function in a non-standard context. While the domain and range of this function are both numbers, the way in which the function is determined is not via a formula but by a (pre-determined) sequence of coin flips. In addition, the task provides an opportunity to compute some probabilities in a discrete situation.
The task is better suited for instruction than for assessment as it …
The task is better suited for instruction than for assessment as it provides students with a non standard setting in which to interpret the meaning of functions. Students should carry out the process of flipping a coin and modeling this Random Walk in order to develop a sense of the process before analyzing it mathematically.
This mini-unit is part of a much larger content focus on Linear …
This mini-unit is part of a much larger content focus on Linear Functions in an 8th grade Resource Math class. Students will be learning about the basics in functions and their use in Pre-Algebra. This unit allows students to receive direct interaction with teachers to receive content in a managable format, while giving them opportunities to learn and discover some of the content on their own. The mini-unit focus solely on the different representations of functions in their basic form. By the end of the unit, students will be able to identifying and compare and contrast different representations of functions.
This HyperDoc links to a presentation, video clips, and virtual graphs that …
This HyperDoc links to a presentation, video clips, and virtual graphs that can help students understand how to graph real-world applications of functions.
In this task students draw the graphs of two functions from verbal …
In this task students draw the graphs of two functions from verbal descriptions. Both functions describe the same situation but changing the viewpoint of the observer changes where the function has output value zero. This small twist forces the students to think carefully about the interpretation of the dependent variable.
The purpose of this task is to give students an opportunity to …
The purpose of this task is to give students an opportunity to explore various aspects of exponential models (e.g., distinguishing between constant absolute growth and constant relative growth, solving equations using logarithms, applying compound interest formulas) in the context of a real world problem with ties to developing financial literacy skills.
The context of this task is a familiar one: a cold beverage …
The context of this task is a familiar one: a cold beverage warms once it is taken out of the refrigerator. Rather than giving the explicit function governing this warmth, a graph is presented along with the general form of the function. Students must then interpret the graph in order to understand more specific details regarding the function.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.