This task is an example of applying geometric methods to solve design …
This task is an example of applying geometric methods to solve design problems and satisfy physical constraints. This task models a satellite orbiting the earth in communication with two control stations located miles apart on earthsŐ surface.
Unit 1: Scale Drawings Lesson 4: Scaled Relationships In previous lessons, students …
Unit 1: Scale Drawings Lesson 4: Scaled Relationships
In previous lessons, students looked at the relationship between a figure and a scaled copy by finding the scale factor that relates the side lengths and by using tracing paper to compare the angles. This lesson takes both of these comparisons a step further.
Students study corresponding distances between points that are not connected by segments, in both scaled and unscaled copies. They notice that when a figure is a scaled copy of another, corresponding distances that are not connected by a segment are also related by the same scale factor as corresponding sides. Students use protractors to test their observations about corresponding angles. They verify in several sets of examples that corresponding angles in a figure and its scaled copies are the same size. Students use both insights—about angles and distances between points—to make a case for whether a figure is or is not a scaled copy of another (MP3). Practice with the use of protractors will help develop a sense for measurement accuracy, and how to draw conclusions from said measurements, when determining whether or not two angles are the same.
The Mathematics Vision Project (MVP) curriculum has been developed to realize the …
The Mathematics Vision Project (MVP) curriculum has been developed to realize the vision and goals of the New Core Standards of Mathematics. The Comprehensive Mathematics Instruction (CMI) framework is an integral part of the materials. You can read more about the CMI framework in the Utah Mathematics Teacher Journal. (UCTM, 2009)
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to solve problems involving area and arc length of a sector of a circle using radians. It assumes familiarity with radians and should not be treated as an introduction to the topic. This lesson is intended to help teachers identify and assist students who have difficulties in: Computing perimeters, areas, and arc lengths of sectors using formulas and finding the relationships between arc lengths, and areas of sectors after scaling.
In this undergraduate level seminar series topics vary from year to year. …
In this undergraduate level seminar series topics vary from year to year. Students present and discuss the subject matter, and are provided with instruction and practice in written and oral communication. Some experience with proofs required. The topic for fall 2008: Computational algebra and algebraic geometry.
This modeling task involves several different types of geometric knowledge and problem-solving: …
This modeling task involves several different types of geometric knowledge and problem-solving: finding areas of sectors of circles (G-C.5), using trigonometric ratios to solve right triangles (G-SRT.8), and decomposing a complicated figure involving multiple circular arcs into parts whose areas can be found (MP.7).
This task is intended to help model a concrete situation with geometry. …
This task is intended to help model a concrete situation with geometry. Placing the seven pennies in a circular pattern is a concrete and fun experiment which leads to a genuine mathematical question: does the physical model with pennies give insight into what happens with seven circles in the plane?
This task provides a concrete geometric setting in which to study rigid …
This task provides a concrete geometric setting in which to study rigid transformations of the plane. It is important for students to be able to visualize and execute these transformations and for this purpose it would be beneficial to have manipulatives and it will important that the students be able to label the vertices of the hexagon with which they are working.
Students should think of different ways the cylindrical containers can be set …
Students should think of different ways the cylindrical containers can be set up in a rectangular box. Through the process, students should realize that although some setups may seem different, they result is a box with the same volume. In addition, students should come to the realization (through discussion and/or questioning) that the thickness of a cardboard box is very thin and will have a negligible effect on the calculations.
This is a foundational geometry task designed to provide a route for …
This is a foundational geometry task designed to provide a route for students to develop some fundamental geometric properties that may seem rather obvious at first glance. In this case, the fundamental property in question is that the shortest path from a point to a line meets the line at a right angle, which is crucial for many further developments in the subject.
This Nrich game can give pupils the opportunity to use their number …
This Nrich game can give pupils the opportunity to use their number knowledge and it can be adapted to stretch even the highest attainers. In its simplest form it can be accessed by anyone in the class who is able to connect the number of spots on a die to the numeral that represents it. Altering the rules and including operations will give the children opportunities to explore ideas about what makes a "good" game and to develop winning strategies to play their games.
An interactive applet and associated web page that demonstrate the concept of …
An interactive applet and associated web page that demonstrate the concept of similar polygons. Applets show that polygons are similar if the are the same shape and possibly rotated, or reflected. In each case the user can drag one polygons and see how another polygons changes to remain similar to it. The web page describes all this and has links to other related pages. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
The topic of music can make a good connection between science and …
The topic of music can make a good connection between science and mathematics The nature of sound and the working of the ear are rich areas of applied mathematics. The ratio emphasis follows from harmonics or overtones and rests on ideas like lowest common multiple.
An interactive applet and associated web page that demonstrate the slope (m) …
An interactive applet and associated web page that demonstrate the slope (m) of a line. The applet has two points that define a line. As the user drags either point it continuously recalculates the slope. The rise and run are drawn to show the two elements used in the calculation. The grid, axis pointers and coordinates can be turned on and off. The slope calculation can be turned off to permit class exercises and then turned back on the verify the answers. The applet can be printed as it appears on the screen to make handouts. The web page has a full description of the concept of slope, a worked example and has links to other pages relating to coordinate geometry. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
The purpose of this task is to lead students through an algebraic …
The purpose of this task is to lead students through an algebraic approach to a well-known result from classical geometry, namely, that a point X is on the circle of diameter AB whenever _AXB is a right angle.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.