Updating search results...

Search Resources

462 Results

View
Selected filters:
  • Physics
Colored Shadows
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this optics activity, learners discover that not all shadows are black. Learners explore human color perception by using colored lights to make additive color mixtures. With three colored lights, learners can make shadows of seven different colors. They can also explore how to make shadows of individual colors, including black. Use this activity demonstrate how receptors in the retina of the eye work to see color.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Electrical Fleas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity about electricity, learners explore how static electricity can make electric "fleas" jump up and down. Learners use a piece of wool cloth or fur to charge a sheet of acrylic plastic. Then, they observe as tiny bits of Styrofoam, spices, ceiling glitter, or rice (aka "fleas") jump up to the plastic and then back down.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Balancing Ball
Read the Fine Print
Rating
0.0 stars

This webpage from Exploratorium provides an activity that demonstrates the Bernoulli principle with readily available materials. In this activity a table tennis ball is levitated in a stream of air from a vacuum cleaner. The site provides an explanation of what happens, asks questions about the activity, and also describes applications to flight. This activity is part of Exploratorium's Science Snacks series.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
06/12/2006
Cool Hot Rod (Thermal Expansion)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The phenomenon is thermal expansion of copper. This demonstration allows an observer to see the effect of heating (and cooling) a copper tube. When heated, the copper tube lengthens and thickens. When cooled, the tube shrinks. The lengthening of the rod rotates a toothpick with an attached flag to make the expansion visible and measurable.

Subject:
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Bubble Tray
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Create giant bubbles! Bubbles are fascinating. What gives them their shape? What makes them break or last? What causes the colors and patterns in the soap film, and why do they change?

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
CD Spectroscope
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Turn an old CD into a spectroscope to analyze light—you may be surprised by what you see. Try pointing your CD spectroscope at the fluorescent light in your room, sunlit clouds in the sky, even your friend’s colored shirt to reveal the wavelengths of light that mix together to create the color you see!

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
The Energy of Music
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Attack of the Raging River
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the students will discover the relationship between an object's mass and the amount of space it takes up (its volume). The students will also learn about the concepts of displacement and density.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
What Makes Airplanes Fly?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin to explore the idea of a force. To further their understanding of drag, gravity and weight, they conduct activities that model the behavior of parachutes and helicopters. An associated literacy activity engages the class to recreate the Wright brothers' first flight in the style of the "You Are There" television series.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
Neon Lights & Other Discharge Lamps
Unrestricted Use
CC BY
Rating
0.0 stars

Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/13/2006
Fourier: Making Waves
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Sam McKagan
Date Added:
10/02/2006
Ramp: Forces and Motion
Unrestricted Use
CC BY
Rating
0.0 stars

Explore forces and motion as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces. Graphs show forces, energy and work.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
10/01/2010
Concentration
Unrestricted Use
CC BY
Rating
0.0 stars

Watch your solution change color as you mix chemicals with water. Then check molarity with the concentration meter. What are all the ways you can change the concentration of your solution? Switch solutes to compare different chemicals and find out how concentrated you can go before you hit saturation!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
03/09/2012
Relativistic Quantum Field Theory I, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" 8.323, Relativistic Quantum Field Theory I, is a one-term self-contained subject in quantum field theory. Concepts and basic techniques are developed through applications in elementary particle physics, and condensed matter physics. "

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Guth, Alan
Date Added:
01/01/2008
Atmospheric Radiation, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. Solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subject:
Atmospheric Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
McClatchey, Robert
Seager, Sara
Date Added:
01/01/2008
Aerodynamics of Viscous Fluids, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Boundary layers as rational approximations to the solutions of exact equations of fluid motion. Physical parameters influencing laminar and turbulent aerodynamic flows and transition. Effects of compressibility, heat conduction, and frame rotation. Influence of boundary layers on outer potential flow and associated stall and drag mechanisms. Numerical solution techniques and exercises. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Merchant, Ali A.
Date Added:
01/01/2003
Bio-Inspired Structures, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course is offered for graduate students who are interested in the interdisciplinary study of bio-inspired structures. The intent is to introduce students to newly inspired modern advanced structures and their applications. It aims to link traditional advanced composites to bio-inspired structures and to discuss their generic properties. A link between materials design, strength and structural behavior at different levels (material, element, structural and system levels) is made. For each level, various concepts will be introduced. The importance of structural, dynamic, thermodynamic and kinetic theories related to such processing is highlighted. The pedagogy is based on active learning and a balance of guest lectures and hands-on activities."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Daniel, Leo
Date Added:
01/01/2009