Seminar on the creativity in art, science, and technology. Discussion of how …
Seminar on the creativity in art, science, and technology. Discussion of how these pursuits are jointly dependent on affective as well as cognitive elements in human nature. Feeling and imagination studied in relation to principles of idealization, consummation, and the aesthetic values that give meaning to science and technology as well as literature and the other arts. Readings in philosophy, psychology, and literature.
Advances in cognitive science have resolved, clarified, and sometimes complicated some of …
Advances in cognitive science have resolved, clarified, and sometimes complicated some of the great questions of Western philosophy: what is the structure of the world and how do we come to know it; does everyone represent the world the same way; what is the best way for us to act in the world. Specific topics include color, objects, number, categories, similarity, inductive inference, space, time, causality, reasoning, decision-making, morality and consciousness. Readings and discussion include a brief philosophical history of each topic and focus on advances in cognitive and developmental psychology, computation, neuroscience, and related fields. At least one subject in cognitive science, psychology, philosophy, linguistics, or artificial intelligence is required. An additional project is required for graduate credit.
This lesson focuses on the biggest problem faced by any young programmer …
This lesson focuses on the biggest problem faced by any young programmer - i.e. the LOGIC BUILDING required while solving a particular problem. With programming, the solution to a particular problem lies in the head, but one is unable to convert it into a computer program. This is because the thought processes of a human are much faster than the sense of observation. If this thought process could be slowed down, logic to solve a programming problem could be found very easily. This lesson focuses on converting this psychological thought process in a step-by -step logic fashion that a computer program can understand. This lesson is recorded in a kitchen where the basic programming concepts are taught by giving examples from the process of making a mango milk shake. This lesson teaches the 4 following techniques: 1) Swapping two variables by swapping a glass of milk with a glass of crushed ice; 2) Finding max from an array by finding the biggest mango; 3) Sorting an array by arranging the jars; and 4) Understanding the concept of a function, parameters and return type by comparing it with the blender/juicer. The lesson targets those students who know the syntax of programming in any language (C or GWBASIC preferred), but are unable to build the logic for a program. It can be taught in a class of 45 to 50 minutes.
This lesson is also available in Mandarin Chinese.
This lesson focuses on the biggest problem faced by any young programmer …
This lesson focuses on the biggest problem faced by any young programmer - i.e. the LOGIC BUILDING required while solving a particular problem. With programming, the solution to a particular problem lies in the head, but one is unable to convert it into a computer program. This is because the thought processes of a human are much faster than the sense of observation. If this thought process could be slowed down, logic to solve a programming problem could be found very easily. This lesson focuses on converting this psychological thought process in a step-by -step logic fashion that a computer program can understand. This lesson is recorded in a kitchen where the basic programming concepts are taught by giving examples from the process of making a mango milk shake. This lesson teaches the 4 following techniques: 1) Swapping two variables by swapping a glass of milk with a glass of crushed ice; 2) Finding max from an array by finding the biggest mango; 3) Sorting an array by arranging the jars; and 4) Understanding the concept of a function, parameters and return type by comparing it with the blender/juicer. The lesson targets those students who know the syntax of programming in any language (C or GWBASIC preferred), but are unable to build the logic for a program. It can be taught in a class of 45 to 50 minutes.
This lesson is also available in Mandarin Chinese.
" This team-taught multidisciplinary course provides information relevant to the conduct and …
" This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Faculty Div Bolar Dr. Bradford Dickerson Dr. John Gabrieli Dr. Doug Greve Dr. Karl Helmer Dr. Dara Manoach Dr. Jason Mitchell Dr. Christopher Moore Dr. Vitaly Napadow Dr. Jon Polimeni Dr. Sonia Pujol Dr. Bruce Rosen Dr. Mert Sabuncu Dr. David Salat Dr. Robert Savoy Dr. David Somers Dr. A. Gregory Sorensen Dr. Christina Triantafyllou Dr. Wim Vanduffel Dr. Mark Vangel Dr. Lawrence Wald Dr. Susan Whitfield-Gabrieli Dr. Anastasia Yendiki "
Deals with the specific functions of neurons, the interactions of neurons in …
Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans.
In this activity, learners discover that it's difficult to distinguish between two …
In this activity, learners discover that it's difficult to distinguish between two different shades of gray when they aren't separated by a boundary. Learners will be surprised when two slightly different shades of the same color look different if there is a sharp boundary between them. But if the boundary is obscured, the two shades appear indistinguishable. Use this activity to help learners explore how the eye-brain system condenses information through a process called lateral inhibition.
Surveys the literature on the cognitive and neural organization of human memory …
Surveys the literature on the cognitive and neural organization of human memory and learning. Includes consideration of working memory and executive control, episodic and semantic memory, and implicit forms of memory. Emphasizes integration of cognitive theory with recent insights from functional neuroimaging (e.g., fMRI and PET). Alternate years.
This course is an introduction to cognitive development focusing on children's understanding …
This course is an introduction to cognitive development focusing on children's understanding of objects, agents, and causality. It develops a critical understanding of experimental design. The course discusses how developmental research might address philosophical questions about the origins of knowledge, appearance and reality, and the problem of other minds. It provides instruction and practice in written communication as needed for cognitive science research (including critical reviews of journal papers, a literature review and an original research proposal), as well as instruction and practice in oral communication in the form of a poster presentation of a journal paper.
Instruction in Functional Assessment introduces learners to functional assessment (FA), which includes …
Instruction in Functional Assessment introduces learners to functional assessment (FA), which includes a variety of assessment approaches (indirect, observational, and experimental) for identifying the cause of an individual’s challenging behavior for the purpose of designing effective treatments. FA is mandated by federal law and is a recognized empirically based approach to treatment of individuals with challenging behaviors (e.g., disruptive, self-injurious, and aggressive behaviors). Instruction in FA is essential for students who will one day enter professions as educators, psychologists, social workers, counselors, or mental health professionals.The purpose of this textbook is to provide instruction in FA skills for pre-professionals in the fields of education and psychology. This supplemental resource provides the context, background, and knowledge to facilitate students’ acquisition of the methods, decision-making, and skills involved in conducting FA. Each chapter begins with focus questions designed to promote reflective thinking and ends with discussion questions. To promote application of FA in diverse situations and teach important lessons, case studies of individuals with challenging behaviors, interactive activities, and opportunities for practice are embedded in the chapters. Moreover, the text includes the ingredients to facilitate students’ role play and rehearsal of appropriate FA skills while working in cooperative groups and using performance-based training.
The course will start with an overview of the central and peripheral …
The course will start with an overview of the central and peripheral nervous systems (CNS and PNS), the development of their structure and major divisions. The major functional components of the CNS will then be reviewed individually. Topography, functional distribution of nerve cell bodies, ascending and descending tracts in the spinal cord. Brainstem organization and functional components, including cranial nerve nuclei, ascending/descending pathways, amine-containing cells, structure and information flow in the cerebellar and vestibular systems. Distribution of the cranial nerves, resolution of their skeletal and branchial arch components. Functional divisions of the Diencephalon and Telencephalon. The course will then continue with how these various CNS pieces and parts work together. Motor systems, motor neurons and motor units, medial and lateral pathways, cortical versus cerebellar systems and their functional integration. The sensory systems, visual, auditory and somatosensory. Olfaction will be covered in the context of the limbic system, which will also include autonomic control and the Papez circuit. To conclude, functional organization and information flow in the neocortex will be discussed.
This course gives a mathematical introduction to neural coding and dynamics. Topics …
This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as, Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site.
Organization of synaptic connectivity as the basis of neural computation and learning. …
Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development. Alternate years.
This class will provide an introductory-level introduction to mammalian neuroanatomy. You will …
This class will provide an introductory-level introduction to mammalian neuroanatomy. You will be taught through lectures (the introductory lecture focusing on structure, and the concluding lecture focusing on function), and through hands-on lab experience.
" This course is an introduction to the mammalian nervous system, with …
" This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain."
Comprehensive coverage of core concepts grounded in both classic studies and current …
Comprehensive coverage of core concepts grounded in both classic studies and current and emerging research, including coverage of the DSM-5 in discussions of psychological disorders. Incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.
This book is designed to help students organize their thinking about psychology …
This book is designed to help students organize their thinking about psychology at a conceptual level. The focus on behaviour and empiricism has produced a text that is better organized, has fewer chapters, and is somewhat shorter than many of the leading books. The beginning of each section includes learning objectives; throughout the body of each section are key terms in bold followed by their definitions in italics; key takeaways, and exercises and critical thinking activities end each section.
This book is designed to help students organize their thinking about psychology …
This book is designed to help students organize their thinking about psychology at a conceptual level. The focus on behaviour and empiricism has produced a text that is better organized, has fewer chapters, and is somewhat shorter than many of the leading books. The beginning of each section includes learning objectives; throughout the body of each section are key terms in bold followed by their definitions in italics; key takeaways, and exercises and critical thinking activities end each section.
This course is a survey of the scientific study of human nature, …
This course is a survey of the scientific study of human nature, including how the mind works, and how the brain supports the mind. Topics include the mental and neural bases of perception, emotion, learning, memory, cognition, child development, personality, psychopathology, and social interaction. Students will consider how such knowledge relates to debates about nature and nurture, free will, consciousness, human differences, self, and society.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.