This course is intended to introduce the student to the concepts and …
This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.
This course introduces fundamental properties of the neutron. It covers reactions induced …
This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. It emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.
The purpose of this lesson is to teach students about the three …
The purpose of this lesson is to teach students about the three dimensional Cartesian coordinate system. It is important for structural engineers to be confident graphing in 3D in order to be able to describe locations in space to fellow engineers.
This course is designed for graduate students with an interest in using …
This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry.
Introduction to the theory and phenomenology of nonlinear dynamics and chaos in …
Introduction to the theory and phenomenology of nonlinear dynamics and chaos in dissipative systems. Forced and parametric oscillators. Phase space. Periodic, quasiperiodic, and aperiodic flows. Sensitivity to initial conditions and strange attractors. Lorenz attractor. Period doubling, intermittency, and quasiperiodicity. Scaling and universality. Analysis of experimental data: Fourier transforms, Poincar, sections, fractal dimension, and Lyapunov exponents. Applications drawn from fluid dynamics, physics, geophysics, and chemistry.
Play with a 1D or 2D system of coupled mass-spring oscillators. Vary …
Play with a 1D or 2D system of coupled mass-spring oscillators. Vary the number of masses, set the initial conditions, and watch the system evolve. See the spectrum of normal modes for arbitrary motion. See longitudinal or transverse modes in the 1D system.
Introduce and explore various types of landforms. GeoInquiries are designed to be …
Introduce and explore various types of landforms.
GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.
Students expand upon their understanding of simple machines with an introduction to …
Students expand upon their understanding of simple machines with an introduction to compound machines. A compound machine a combination of two or more simple machines can affect work more than its individual components. Engineers who design compound machines aim to benefit society by lessening the amount of work that people exert for even common household tasks. This lesson encourages students to critically think about machine inventions and their role in our lives.
This capstone course is a group design project involving integration of nuclear …
This capstone course is a group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. It provides opportunities to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Each year, the class takes on a different design project; this year, the project is a power plant design that ties together the creation of emission-free electricity with carbon sequestration and fossil fuel displacement. Students taking graduate version complete additional assignments.This course is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
Categorize sections of the oceans and understand their importance. GeoInquiries are designed …
Categorize sections of the oceans and understand their importance.
GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.
In this extension to the Ohm's Law I activity, students observe just …
In this extension to the Ohm's Law I activity, students observe just how much time it takes to use up the "juice" in a battery, and if it is better to use batteries in series or parallel. This extension is suitable as a teacher demonstration and may be started before students begin work on the Ohm's Law I activity.
Students work to increase the intensity of a light bulb by testing …
Students work to increase the intensity of a light bulb by testing batteries in series and parallel circuits. They learn about Ohm's law, power, parallel and series circuits, and ways to measure voltage and current.
Objective Students will be able compare different versions of the scientific method …
Objective Students will be able compare different versions of the scientific method and come up with their own.
Big Idea There is no one way to "do" science, different sources describe the scientific method in different ways. However, they all incorporate the same concepts and principles.
OpenSciEd middle school is NGSS-aligned science curriculum. Designed for all students and …
OpenSciEd middle school is NGSS-aligned science curriculum. Designed for all students and teachers, OpenSciEd includes student-facing materials as well as teacher guides. As with most instructional materials, excellent professional learning for teachers should be provided. For more information in Michigan contact the Michigan Mathematics and Science Leadership Network, starrm@mimathandscience.org
Explore an active area of research in optical physics: producing designer pulse …
Explore an active area of research in optical physics: producing designer pulse shapes to achieve specific purposes, such as breaking apart a molecule. Carefully create the perfect shaped pulse to break apart a molecule by individually manipulating the colors of light that make up a pulse.
Did you ever imagine that you can use light to move a …
Did you ever imagine that you can use light to move a microscopic plastic bead? Explore the forces on the bead or slow time to see the interaction with the laser's electric field. Use the optical tweezers to manipulate a single strand of DNA and explore the physics of tiny molecular motors. Can you get the DNA completely straight or stop the molecular motor?
This stand-alone module intends to provide some motivation for studying organic chemistry. …
This stand-alone module intends to provide some motivation for studying organic chemistry. The topics touch briefly on some basic organic chemistry topics and focus on various organic compounds that readers would encounter in everyday life.
Intermediate organic chemistry. Synthesis, structure determination, mechanism, and the relationships between structure …
Intermediate organic chemistry. Synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry included to illustrate the role of organic chemistry in biological systems and in the chemical industry.
Introduction to organic chemistry. Development of basic principles to understand the structure …
Introduction to organic chemistry. Development of basic principles to understand the structure and reactivity of organic molecules. Emphasis on substitution and elimination reactions and chemistry of the carbonyl group. Introduction to the chemistry of aromatic compounds.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.