CK-12’s Life Science delivers a full course of study in the life …
CK-12’s Life Science delivers a full course of study in the life sciences for the middle school student, relating an understanding of the history, disciplines, tools, and modern techniques of science to the exploration of cell biology, molecular biology, genetics, evolution, prokaryotes, protists,fungi, plants, animals, invertebrates, vertebrates, human biology, and ecology. This digital textbook was reviewed for its alignment with California content standards.
CK-12’s Life Science delivers a full course of study in the life …
CK-12’s Life Science delivers a full course of study in the life sciences for the middle school student, relating an understanding of the history, disciplines, tools, and modern techniques of science to the exploration of cell biology, genetics, evolution, prokaryotes, protists, fungi, plants, the animal kingdom, the human body, and ecology. This digital textbook was reviewed for its alignment with California content standards.
A simulation that shows the rate and scope of spread of COVID-19 …
A simulation that shows the rate and scope of spread of COVID-19 in a community. Students can change variables such as number of people, number of vaccinated people, workplace policies, school policies, etc.
A simulation that shows the rate and scope of spread of COVID-19 …
A simulation that shows the rate and scope of spread of COVID-19 in a community. Students can change variables such as number of people, schooling plans, etc. A more advanced version of this simulation can be found at https://openscied-static.s3.amazonaws.com/HTML+Files/COVID-19+Vaccination.html
This course has been designed as a seminar to give students an …
This course has been designed as a seminar to give students an understanding of how scientists with medical or scientific degrees conduct research in both hospital and academic settings. There will be interactive discussions with research clinicians and scientists about the career opportunities and research challenges in the biomedical field, which an MIT student might prepare for by obtaining an MD, PhD, or combined degrees. The seminar will be held in a case presentation format, with topics chosen from the radiological sciences, including current research in magnetic resonance imaging, positron emission tomography and other nuclear imaging techniques, and advances in radiation therapy. With the lectures as background, we will also examine alternative and related options such as biomedical engineering, medical physics, and medical engineering. We'll use as examples and points of comparisons the curriculum paths available through MIT's Department of Nuclear Science and Engineering. In past years we have given very modest assignments such as readings in advance of or after a seminar, and a short term project.
Biology of cells of higher organisms: structure, function, and biosynthesis of cellular …
Biology of cells of higher organisms: structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.
The goal of this course is to teach both the fundamentals of …
The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.
In this lesson, the students look at the components of cells and …
In this lesson, the students look at the components of cells and their functions. The lesson focuses on the difference between prokaryotic and eukaryotic cells. Each part of the cell performs a specific function that is vital for the cell's survival. Bacteria are single-celled organisms that are very important to engineers. Engineers can use bacteria to break down toxic materials in a process called bioremediation, and they can also kill or disable harmful bacteria through disinfection.
Subject covers all major areas of cellular and molecular neurobiology including excitable …
Subject covers all major areas of cellular and molecular neurobiology including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell type determination, axon guidance and targeting, neuronal cell biology, synapse formation and plasticity. Includes lectures and exams, and involves presentation and discussion of primary literature. Focus on major concepts and recent advances in experimental neuroscience.
The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are …
The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their biologically active folded state from those that are terminally misfolded.
This course serves as an introduction to the structure and function of …
This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.
In this lesson, students learn about the basics of cellular respiration. They …
In this lesson, students learn about the basics of cellular respiration. They also learn about the application of cellular respiration to engineering and bioremediation. And, students are introduced to the process of bioremediation and several examples of how bioremediation is used during the cleanup of environmental contaminants.
Covers cells and tissues of the immune system, lymphocyte development, the structure …
Covers cells and tissues of the immune system, lymphocyte development, the structure and function of antigen receptors, the cell biology of antigen processing and presentation including molecular structure and assembly of MHC molecules, lymphocyte activation, the biology of cytokines, leukocyte-endothelial interactions, and the pathogenesis of immunologically mediated diseases. Consists of lectures and tutorials in which clinical cases are discussed with faculty tutors. Details of the case covering a number of immunological issues in the context of disease are posted on a student Web site.
Introduces the design of chemical reactors via synthesis of chemical kinetics, transport …
Introduces the design of chemical reactors via synthesis of chemical kinetics, transport phenomena, and mass and energy balances. Topics: reaction mechanisms and chemical/biochemical pathways; transition-state theory; batch, plug flow and well-stirred reactors; heterogeneous and enzymatic catalysis; heat and mass transport in reactors, including diffusion to and within catalyst particles and cells or immobilized enzymes.
This simulation shows the relationship between the inputs and outputs in the …
This simulation shows the relationship between the inputs and outputs in the chloroplasts of plants to help explain how they convert water and carbon dioxide to glucose and water with the help of energy absorbed from light. It is used in Lesson 5 of Unit 7.4 in the OpenSciEd curriculum.
The topic of this video module is how to classify animals based …
The topic of this video module is how to classify animals based on how closely related they are. The main learning objective is that students will learn how to make phylogenetic trees based on both physical characteristics and on DNA sequence. Students will also learn why the objective and quantitative nature of DNA sequencing is preferable when it come to classifying animals based on how closely related they are. Knowledge prerequisites to this lesson include that students have some understanding of what DNA is and that they have a familiarity with the base-pairing rules and with writing a DNA sequence.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.