Look inside a resistor to see how it works. Increase the battery …
Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.
Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
The PhET project at the University of Colorado creates "fun, interactive, research-based …
The PhET project at the University of Colorado creates "fun, interactive, research-based simulations of physical phenomena." This particular one deals with Beer's Law. "The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer! The simulation is also paired with a teachers' guide and related resources from PhET. The simulation is also available in multiple languages.
Explore bending of light between two media with different indices of refraction. …
Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.
When will objects float and when will they sink? Learn how buoyancy …
When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.
A simulation that shows the rate and scope of spread of COVID-19 …
A simulation that shows the rate and scope of spread of COVID-19 in a community. Students can change variables such as number of people, number of vaccinated people, workplace policies, school policies, etc.
A simulation that shows the rate and scope of spread of COVID-19 …
A simulation that shows the rate and scope of spread of COVID-19 in a community. Students can change variables such as number of people, schooling plans, etc. A more advanced version of this simulation can be found at https://openscied-static.s3.amazonaws.com/HTML+Files/COVID-19+Vaccination.html
Explore how a capacitor works! Change the size of the plates and …
Explore how a capacitor works! Change the size of the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. Shows the electric field in the capacitor. Measure voltage and electric field.
Move point charges around on the playing field and then view the …
Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.
This simulation shows the relationship between the inputs and outputs in the …
This simulation shows the relationship between the inputs and outputs in the chloroplasts of plants to help explain how they convert water and carbon dioxide to glucose and water with the help of energy absorbed from light. It is used in Lesson 5 of Unit 7.4 in the OpenSciEd curriculum.
This new version of the CCK adds capacitors, inductors and AC voltage …
This new version of the CCK adds capacitors, inductors and AC voltage sources to your toolbox! Now you can graph the current and voltage as a function of time.
Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, …
Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments such as voltmeters and ammeters.
Build circuits with resistors, light bulbs, batteries, and switches and take measurements …
Build circuits with resistors, light bulbs, batteries, and switches and take measurements with laboratory equipment like the realistic ammeter and voltmeter.
An interactive applet and associated web page that demonstrate the circumference of …
An interactive applet and associated web page that demonstrate the circumference of a circle. The applet shows a circle with a radius line. The radius endpoints are draggable and the circle is resized accordingly. The formula relating radius to circumference is updated continually as you drag. Introduces the idea of Pi. The formula can be hidden for class discussion and estimation. See also the entries for circumference and diameter. See also entries for radius and diameter. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
Investigate collisions on an air hockey table. Set up your own experiments: …
Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.
Make a whole rainbow by mixing red, green, and blue light. Change …
Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white light. View the light as a solid beam, or see the individual photons.
An interactive applet and associated web page that demonstrate the concept of …
An interactive applet and associated web page that demonstrate the concept of complementary angles (angles that add to 90 degrees). The applet shows two angles. You can drag the endpoints of each angle and the other angle changes so that they always add to 90 degrees. They are drawn in such a way that it is visually obvious that together they form a right angle, although they are separate on the page. The angle measure readouts can be turned off for class discussions. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
Watch your solution change color as you mix chemicals with water. Then …
Watch your solution change color as you mix chemicals with water. Then check molarity with the concentration meter. What are all the ways you can change the concentration of your solution? Switch solutes to compare different chemicals and find out how concentrated you can go before you hit saturation!
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.