Updating search results...

Search Resources

993 Results

View
Selected filters:
  • Physical Science
Freshman Seminar: The Nature of Engineering, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you interested in investigating how nature engineers itself? How engineers copy the shapes found in nature ("biomimetics")? This Freshman Seminar investigates why similar shapes occur in so many natural things and how physics changes the shape of nature. Why are things in nature shaped the way they are? How do birds fly? Why do bird nests look the way they do? How do woodpeckers peck? Why can't trees grow taller than they are? Why is grass skinny and hollow? What is the wood science behind musical instruments? Questions such as these are the subject of biomimetic research and they have been the focus of investigation in this course for the past three years.

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Gibson, Lorna J.
Date Added:
01/01/2005
Fresh or Salty?
Read the Fine Print
Educational Use
Rating
0.0 stars

Between 70 and 75% of the Earth's surface is covered with water and there exists still more water in the atmosphere and underground in aquifers. In this lesson, students learn about water bodies on the planet Earth and their various uses and qualities. They will learn about several ways that engineers are working to maintain and conserve water sources. They will also think about their role in water conservation.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
Friction
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Michael Dubson
Mindy Gratny
Wendy Adams
Date Added:
06/01/2004
Friction Force
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
From Nano to Macro: Introduction to Atomistic Modeling Techniques, January (IAP) 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The objective of this course is to introduce large-scale atomistic modeling techniques and highlight its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be used to understand how materials fail under extreme loading, involving unfolding of proteins and propagation of cracks.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Buehler, Markus
Date Added:
01/01/2007
From Sunlight to Electric Current
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson will first explore the concept of current in electrical circuits. Current will be defined as the flow of electrons. Photovoltaic (PV) cell properties will then be introduced. Generally constructed of silicon, photovoltaic cells contain a large number of electrons BUT they can be thought of as "frozen" in their natural state. A source of energy is required to "free" these electrons if we wish to create current. Light from the sun provides this energy. This will lead to the principle of "Conservation of Energy." Finally, with a basic understanding of the circuits through Ohm's law, students will see how the energy from the sun can be used to power everyday items, including vehicles. This lesson utilizes the engineering design activity of building a solar car to help students learn these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rahmin Sarabi
Date Added:
09/18/2014
Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Faculty Div Bolar Dr. Bradford Dickerson Dr. John Gabrieli Dr. Doug Greve Dr. Karl Helmer Dr. Dara Manoach Dr. Jason Mitchell Dr. Christopher Moore Dr. Vitaly Napadow Dr. Jon Polimeni Dr. Sonia Pujol Dr. Bruce Rosen Dr. Mert Sabuncu Dr. David Salat Dr. Robert Savoy Dr. David Somers Dr. A. Gregory Sorensen Dr. Christina Triantafyllou Dr. Wim Vanduffel Dr. Mark Vangel Dr. Lawrence Wald Dr. Susan Whitfield-Gabrieli Dr. Anastasia Yendiki "

Subject:
Anatomy/Physiology
Life Science
Physical Science
Physics
Psychology
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Gollub, Randy
Date Added:
01/01/2008
GPS: Where Are You?, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This is a freshman advising seminar. The professor of a FAS is the first year advisor to the (no more than 8) students in the seminar. The use of Global Positioning System (GPS) in a wide variety of applications has exploded in the last few years. In this seminar we explore how positions on the Earth were determined before GPS; how GPS itself works and the range of applications in which GPS is now a critical element. This seminar is followed by a UROP research project in the spring semester where results from precise GPS measurements will be analyzed and displayed on the Web."

Subject:
Geology
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Herring, Thomas
Date Added:
01/01/2008
GPS by Star Motion Video
Read the Fine Print
Rating
0.0 stars

This video is used to demonstrate how observing the motion of stars can allow you to find your latitude on the earth. This video can be used very early in the discussion of star motion and is a nice compliment to the simulation found in the video, which is available here. http://astro.unl.edu/naap/motion2/starpaths.html

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
Michigan Virtual
Author:
Andrew Vanden Heuvel
Date Added:
05/28/2014
Galaxies and Dark Matter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson has the goal of introducing students to galaxies as large collections of gravitationally bound stars. It explores the amount of matter needed for a star to remain bound and then brings in the idea of Dark Matter, a new kind of matter that does not interact with light. It is best if students have had some high school level mechanics, ideally Newton's laws, orbital motion and centripetal force. The teacher guide segment has a derivation of centripetal acceleration. This lesson should be mostly accessible to students with no physics background. The video portion of this lesson runs about 30 minutes, and the questions and demonstrations will give a total activity time of about an hour if the materials are all at hand and the students work quickly. However, 1 1/2 hours is a more comfortable amount of time. There are several demonstrations that can be carried out using string, ten or so balls of a few inches in diameter, a stopwatch or clock with a sweep second hand and some tape. The demonstrations are best done outside, but can also be carried out in a gymnasium or other large room. If the materials or space are not available, there are videos of the demonstrations in the module and these may be used.

Subject:
Astronomy
Physical Science
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Peter Fisher
Date Added:
02/15/2018
Galaxies and Dark Matter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson has the goal of introducing students to galaxies as large collections of gravitationally bound stars. It explores the amount of matter needed for a star to remain bound and then brings in the idea of Dark Matter, a new kind of matter that does not interact with light. It is best if students have had some high school level mechanics, ideally Newton's laws, orbital motion and centripetal force. The teacher guide segment has a derivation of centripetal acceleration. This lesson should be mostly accessible to students with no physics background. The video portion of this lesson runs about 30 minutes, and the questions and demonstrations will give a total activity time of about an hour if the materials are all at hand and the students work quickly. However, 1 1/2 hours is a more comfortable amount of time. There are several demonstrations that can be carried out using string, ten or so balls of a few inches in diameter, a stopwatch or clock with a sweep second hand and some tape. The demonstrations are best done outside, but can also be carried out in a gymnasium or other large room. If the materials or space are not available, there are videos of the demonstrations in the module and these may be used.

Subject:
Astronomy
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Peter Fisher
Date Added:
04/07/2020
Galileo's ramp with sound
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The simulation beeps each time the ball passes one of the vertical red lines. Just like the bells on Galileo's ramp, the positions of three of the vertical red lines can be adjusted. The first line and the last line are fixed in place, but the sliders allow you to adjust the positions of the second, third, and fourth lines. Move the lines around until the beeps occur at regular time intervals (make sure the sound is on, on your computer or mobile device).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Boston University
Author:
Andrew Duffy
Date Added:
08/10/2020
Gaoming Studio - China, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The studio will focus on the district of Gaoming, located in the northwest of the Pearl River Delta (PRD) - the fastest growing and most productive region of China. The District has recently completed a planning effort in which several design institutes and a Hong Kong planning firm prepared ideas for a new central area near the river. The class will complement these efforts by focusing on planning and design options on the waterfront of the proposed new district and ways of integrating water/hydrological factors into all aspects and land uses of a modern city (residential, commercial, industrial) - including watershed and natural ecosystem protection, economic and recreational activities, transportation, and tourism.

Subject:
Applied Science
Architecture and Design
Ecology
Hydrology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lee, Tunney
Date Added:
01/01/2005
Gas Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This highly visual model demonstrates the atomic theory of matter which states that a gas is made up of tiny particles of atoms that are in constant motion, smashing into each other. Balls, representing molecules, move within a cage container to simulate this phenomenon. A hair dryer provides the heat to simulate the heating and cooling of gas: the faster the balls are moving, the hotter the gas. Learners observe how the balls move at a slower rate at lower "temperatures."

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Gas Particle Motion Simulation
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation explores the relationship between the temperature of a gas, the motion of the particles in the gas and the changes in the kinetic energies of particles during collisions. It is used in Lesson 12 and Lesson 13 of unit 6.2 of the OpenSciEd curriculum.

Subject:
Physical Science
Physics
Material Type:
Simulation
Author:
OpenSciEd
Date Added:
04/29/2021
Gas Properties
Unrestricted Use
CC BY
Rating
0.0 stars

Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Jack Barbera
Kathy Perkins
Linda Koch
Michael Dubson
Ron LeMaster
Date Added:
10/05/2006
General Circulation of the Earth's Atmosphere, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Diagnostic studies and discussion of their implications for the theory of the structure and general circulation of the Earth's atmosphere. Includes some discussion of the validation and use of general circulation models as atmospheric analogs.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Stone, Peter
Date Added:
01/02/2009
Generator
Unrestricted Use
CC BY
Rating
0.0 stars

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can use them to make a bulb light.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
04/01/2008
Geodynamics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

Subject:
Geology
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hager, Bradford
Date Added:
01/01/2006