Updating search results...

Search Resources

417 Results

View
Selected filters:
  • engineering
DIY Design Challenge Activity from ISKME's Teacher Academy
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This wiki page describes the DIY Design Challenge Activity used during ISKME's Teacher Academy. Design a DIY Project for students that meets the following design principles:The design must meet a need for their school community. The design must use collaboration between teacher, student, and community. The design must be multidisciplinary. The design must use low cost and/or no cost materials. Group examples are included.

Subject:
Applied Science
Arts and Humanities
Engineering
Material Type:
Activity/Lab
Teaching/Learning Strategy
Provider:
ISKME
Date Added:
02/16/2018
DIY Guide: 53 Miles per Burrito
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In this engineering, math, and sustainability project students answer the question, “Can I ride 53 miles on a bike from the energy of a single burrito?” They must define their variables, collect and analyze their data, and present their results. By the end of this project, developed by Allen Distinguished Educator Mike Wierusz, students should have all the information they need to design a burrito that would provide them with the exact caloric content necessary to ride 53 miles.

Subject:
Applied Science
Engineering
Environmental Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Author:
Allen Distinguished Educators
Mike Wierusz
Date Added:
08/04/2020
D-Lab: Energy, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

D-Lab: Energy offers a hands-on, project-based approach that engages students in understanding and addressing the applications of small-scale, sustainable energy technology in developing countries where compact, robust, low-cost systems for generating power are required. Projects may include micro-hydro, solar, or wind turbine generators along with theoretical analysis, design, prototype construction, evaluation and implementation. Students will have the opportunity both to travel to Nicaragua during spring break to identify and implement projects. D-Lab: Energy is part of MIT's D-Lab program, which fosters the development of appropriate technologies and sustainable solutions within the framework of international development.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Banzaert, Amy
Date Added:
01/01/2011
DNA Forensics and Color Pigments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis. They place small drops of different food coloring ("water-based paint") on strips of filter paper and then place one paper strip end in water. As water travels along the paper strips, students observe the pigments that compose the paint decompose into their color components. This is an example of the chromatography concept applied to DNA forensics, with the pigments in the paint that define the color being analogous to DNA fragments of different lengths.

Subject:
Applied Science
Engineering
Genetics
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Dam Pass or Fail
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct Internet research to investigate the purpose and current functioning status of some of the largest dams throughout the world. They investigate the success or failure of eight dams and complete a worksheet. While researching the dams, they also gain an understanding of the scale of these structures by recording and comparing their reservoir capacities. Students come to understand that dams, like all engineered structures, have a finite lifespan and require ongoing maintenance and evaluation for their usefulness.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Jeff Lyng
Kristin Field
Megan Podlogar
Date Added:
09/18/2014
Decimals, Fractions & Percentages
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about and practice converting between fractions, decimals and percentages. Using a LEGO® MINDSTORMS® NXT robot and a touch sensor, each group inputs a fraction of its choosing. Team members convert this same fraction into a decimal, and then a percentage via hand calculations, and double check their work using the NXT robot. Then they observe the robot moving forward and record that distance. Students learn that the distance moved is a fraction of the full distance, based on the fraction that they input, so if they input ½, the robot moves half of the original distance. From this, students work backwards to compute the full distance. Groups then compete in a game in which they are challenged to move the robot as close as possible to a target distance by inputting a fraction into the NXT bot.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Javed Narain
Date Added:
09/18/2014
Density Column Lab - Part 1
Read the Fine Print
Educational Use
Rating
0.0 stars

In this first part of a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate the densities of several common, irregularly shaped objects with the purpose to resolve confusion about mass and density. After this activity, conduct the associated Density Column Lab - Part 2 activity before presenting the associated Density & Miscibility lesson for discussion about concepts that explain what students have observed.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Density Column Lab - Part 2
Read the Fine Print
Educational Use
Rating
0.0 stars

Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Design Thinking for Gift Giving
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this project, students take on the role of an industrial engineer and learn about user-centered product design. They will go through all of the steps of James Dyson’s design process to design a gift that other students would want to buy for one of their adult family members. Students then vote to choose two final designs to move into production and will also create marketing materials for selling the product at school or another appropriate venue.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Author:
Allen Distinguished Educators
Date Added:
08/05/2020
Design for Sustainability, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Adams, Eric
Date Added:
01/01/2006
Designing a Sustainable Guest Village in the Saguaro National Park
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to design a permanent guest village within the Saguaro National Park in Arizona. The design must provide a true desert experience to visitors while emphasizing sustainable design, protection of the natural environment, and energy and resource conservation. To successfully address and respond to this challenge, students must acquire an understanding of desert ecology, environmental limiting factors, species adaptations and resource utilization. Following theintroduction, students generate ideas and consider the knowledge required to complete the challenge. The lectures and activities that follow serve to develop this level of comprehension. To introduce the concepts of healthy ecosystems, biomimetics and the importance of sustainable environmental design, students watch three video clips of experts. These clips provide direction for student research and challenge design solutions.

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Forestry and Agriculture
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Wendy J. Holmgren
Date Added:
09/18/2014
Destination Outer Space
Read the Fine Print
Educational Use
Rating
0.0 stars

Students acquire a basic understanding of the science and engineering of space travel as well as a brief history of space exploration. They learn about the scientists and engineers who made space travel possible and briefly examine some famous space missions. Finally, they learn the basics of rocket science (Newton's third law of motion), the main components of rockets and the U.S. space shuttle, and how engineers are involved in creating and launching spacecraft.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Denise W. Carlson
Geoff Hill
Jessica Butterfield
Jessica Todd
Sam Semakula
Date Added:
09/18/2014
Detail Drawings: Communicating with Engineers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to detail drawings and the importance of clearly documenting and communicating their designs. They are introduced to the American National Standards Institute (ANSI) Y14.5 standard, which controls how engineers communicate and archive design information. They are introduced to standard paper sizes and drawing view conventions, which are major components of the Y14.5 standard.

Subject:
Applied Science
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Development of Inventions and Creative Ideas, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Role of the engineer as patent expert and as technical witness in court and patent interference and related proceedings. Rights and obligations of engineers in connection with educational institutions, government, and large and small businesses. Various manners of transplanting inventions into business operations, including development of New England and other US electronics and biotech industries and their different types of institutions. American systems of incentive to creativity apart from the patent laws in the atomic energy and space fields. For graduate students only; others see 6.901.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Rines, Robert
Date Added:
01/01/2008
Differential Equations, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Arthur Mattuck
Haynes Miller
Jeremy Orloff
John Lewis
Date Added:
01/01/2011
Diffraction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity from the Exploratorium provides an introduction to the diffraction of light which indicates its wavelike properties. Two pencils are used to create a slit through which a flashlight bulb or candle˘ď‹ď_s light is examined. The site contains an explanation of the observed interference patterns, additional materials that can be experimented with, and an extension activity. This activity is part of Exploratorium's Science Snacks series.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
06/12/2006
Discovering Phi: The Golden Ratio
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover the mathematical constant phi, the golden ratio, through hands-on activities. They measure dimensions of "natural objects"—a star, a nautilus shell and human hand bones—and calculate ratios of the measured values, which are close to phi. Then students learn a basic definition of a mathematical sequence, specifically the Fibonacci sequence. By taking ratios of successive terms of the sequence, they find numbers close to phi. They solve a squares puzzle that creates an approximate Fibonacci spiral. Finally, the instructor demonstrates the rule of the Fibonacci sequence via a LEGO® MINDSTORMS® NXT robot equipped with a pen. The robot (already created as part of the companion activity, The Fibonacci Sequence & Robots) draws a Fibonacci spiral that is similar to the nautilus shape.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nicole Abaid
Date Added:
09/18/2014
Do You See What I See?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the concept of optical character recognition (OCR) in a problem-solving environment. They research OCR and OCR techniques and then apply those methods to the design challenge by developing algorithms capable of correctly "reading" a number on a typical high school sports scoreboard. Students use the structure of the engineering design process to guide them to develop successful algorithms. In the associated activity, student groups implement, test and revise their algorithms. This software design lesson/activity set is designed to be part of a Java programming class.

Subject:
Applied Science
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Derek Babb
Date Added:
09/18/2014
Does It Cut It? Understanding Wind Turbine Blade Performance
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Students gain an understanding of the factors that affect wind turbine operation. Following the steps of the engineering design process, engineering teams use simple materials (cardboard and wooden dowels) to build and test their own turbine blade prototypes with the objective of maximizing electrical power output for a hypothetical situation—helping scientists power their electrical devices while doing research on a remote island. Teams explore how blade size, shape, weight and rotation interact to achieve maximal performance, and relate the power generated to energy consumed on a scale that is relevant to them in daily life. A PowerPoint® presentation, worksheet and post-activity test are provided.

Subject:
Mathematics
Material Type:
Activity/Lab
Date Added:
06/10/2021