This course provides a critical analysis of mass media in our culture. …
This course provides a critical analysis of mass media in our culture. Various types of media such as books, films, video games, and online interactions will be discussed and reviewed. This course will also evaluate how information and ideas travel between people on a large scale.
This subject provides an introduction to modeling and simulation, covering continuum methods, …
This subject provides an introduction to modeling and simulation, covering continuum methods, atomistic and molecular simulation, and quantum mechanics. Hands-on training is provided in the fundamentals and applications of these methods to key engineering problems. The lectures provide exposure to areas of application based on the scientific exploitation of the power of computation. We use web based applets for simulations, thus extensive programming skills are not required.
Through a progressive series of composition projects, students investigate the sonic organization …
Through a progressive series of composition projects, students investigate the sonic organization of musical works and performances, focusing on fundamental questions of unity and variety. Aesthetic issues are considered in the pragmatic context of the instructions that composers provide to achieve a desired musical result, whether these instructions are notated in prose, as graphic images, or in symbolic notation. No formal training is required. Weekly listening, reading, and composition assignments draw on a broad range of musical styles and intellectual traditions, from various cultures and historical periods.
Traditionally, progress in electronics has been driven by miniaturization. But as electronic …
Traditionally, progress in electronics has been driven by miniaturization. But as electronic devices approach the molecular scale, classical models for device behavior must be abandoned. To prepare for the next generation of electronic devices, this class teaches the theory of current, voltage and resistance from atoms up. To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and Schrĺ_dinger's equation. Then we will consider the electronic properties of molecules, carbon nanotubes and crystals, including energy band formation and the origin of metals, insulators and semiconductors. Electron conduction will be taught beginning with ballistic transport and concluding with a derivation of Ohm's law. We will then compare ballistic to bulk MOSFETs. The class will conclude with a discussion of possible fundamental limits to computation.
Organization of synaptic connectivity as the basis of neural computation and learning. …
Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development. Alternate years.
This class will provide an introductory-level introduction to mammalian neuroanatomy. You will …
This class will provide an introductory-level introduction to mammalian neuroanatomy. You will be taught through lectures (the introductory lecture focusing on structure, and the concluding lecture focusing on function), and through hands-on lab experience.
" This course is an introduction to the mammalian nervous system, with …
" This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain."
This course analyzed the basic techniques for the efficient numerical solution of …
This course analyzed the basic techniques for the efficient numerical solution of problems in science and engineering. Topics spanned root finding, interpolation, approximation of functions, integration, differential equations, direct and iterative methods in linear algebra.
This course is offered to undergraduates and introduces students to the formulation, …
This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This class was originally listed in Course 13 (Ocean Engineering) as 13.002J.
An introduction to the results and techniques of observations of the ocean …
An introduction to the results and techniques of observations of the ocean in the context of its physical properties and dynamical constraints. Emphasis on large-scale steady circulation and the time-dependent processes that contribute to it. Includes the physical setting of the ocean, atmospheric forcing, application of conservation laws, description of wind-driven and thermohaline circulation, eddy processes, and interpretive techniques.
This course is an introduction to the fundamental aspects of science and …
This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data.
This course provides students with concepts, techniques and tools to design, analyze, …
This course provides students with concepts, techniques and tools to design, analyze, and improve core operational capabilities, and apply them to a broad range of application domains and industries. It emphasizes the effect of uncertainty in decision-making, as well as the interplay between high-level financial objectives and operational capabilities. Topics covered include production control, risk pooling, quality management, process design, and revenue management. Also included are case studies, guest lectures, and simulation games which demonstrate central concepts.
" This course, which spans a third of a semester, provides students …
" This course, which spans a third of a semester, provides students with experienceĺĘusing techniques employed in synthetic organic chemistry. It alsoĺĘintroduces them to the exciting research area of catalytic chiral catalysis. This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format."
This course introduces three main types of partial differential equations: diffusion, elliptic, …
This course introduces three main types of partial differential equations: diffusion, elliptic, and hyperbolic. It includes mathematical tools, real-world examples and applications.
This course explores the nature of meaning and truth, and their bearing …
This course explores the nature of meaning and truth, and their bearing on the use of language in communication. No knowledge of logic or linguistics is presupposed.
Introduction to the current research questions in phonological theory. Topics include: metrical …
Introduction to the current research questions in phonological theory. Topics include: metrical and prosodic structure; features and their phonetic basis in speech; acquisition and parsing; phonological domains; morphology; and language change and reconstruction. Activities include problem solving, squibs, and data collection. The year-long Introduction to Phonology reviews at the graduate level fundamental notions of phonological analysis and introduces students to current debates, research and analytical techniques. The Fall term reviews issues pertaining to the nature of markedness and phonological representations - features, prosodies, syllables and stress - while the second term deals with the relation between the phonological component and the lexicon, morphology and syntax. The second term course will also treat in more detail certain phonological phenomena.
Investigates fundamental issues in photography, both analog and digital, and the nature …
Investigates fundamental issues in photography, both analog and digital, and the nature of the photographic image as well as nontraditional ways of exploring the photographic vision. Explores relationship of image to language as well as the issues of meaning, interpretation, and their relationship to culture.
The plasma state dominates the visible universe, and is important in fields …
The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.
Elementary introduction with applications. Basic probability models. Combinatorics. Random variables. Discrete and …
Elementary introduction with applications. Basic probability models. Combinatorics. Random variables. Discrete and continuous probability distributions. Statistical estimation and testing. Confidence intervals. Introduction to linear regression.
This course is an introduction to software engineering, using the Java™ programming …
This course is an introduction to software engineering, using the Java™ programming language. It covers concepts useful to 6.005. Students will learn the fundamentals of Java. The focus is on developing high quality, working software that solves real problems.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.