Meg set out to climb up and investigate the rain forest tree …
Meg set out to climb up and investigate the rain forest tree canopies — and to be the first scientist to do so. But she encountered challenge after challenge. Male teachers would not let her into their classrooms, the high canopy was difficult to get to, and worst of all, people were logging and clearing the forests. Meg never gave up or gave in. She studied, invented, and persevered, not only creating a future for herself as a scientist, but making sure that the rainforests had a future as well. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Your community has many different areas to explore - it might be a park, a grocery store, a forest, or an alley. For some people, it might be difficult to explore these areas because they may have differing abilities. Select one area in your community, and come up with a plan to build a way for it to be more accessible to everyone.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
This lesson unit is intended to help teahcers assess how well students …
This lesson unit is intended to help teahcers assess how well students are able to interpret speed as the slope of a linear graph and translate between the equation of a line and its graphical representation.
Richard grew up in Kenya as a Maasai boy, herding his family’s …
Richard grew up in Kenya as a Maasai boy, herding his family’s cattle, which represented their wealth and livelihood. Richard’s challenge was to protect their cattle from the lions who prowled the night just outside the barrier of acacia branches that surrounded the farm’s boma, or stockade. Though not well-educated, 12-year-old Richard loved tinkering with electronics. Using salvaged components, spending $10, he surrounded the boma with blinking lights, and the system works; it keeps lions away. His invention, Lion Lights, is now used in Africa, Asia, and South America to protect farm animals from predators. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Your challenge is to use broken or old technology and other available resources to create a prototype that can be used to protect your home. This could involve tinkering, hacking, or redesigning the components of the technology to meet your needs.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
Tells the story of how the Slinky, the most popular toy in …
Tells the story of how the Slinky, the most popular toy in American history, was invented. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Develop a commercial about the Slinky.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
Students learn about slope, determining slope, distance vs. time graphs through a …
Students learn about slope, determining slope, distance vs. time graphs through a motion-filled activity. Working in teams with calculators and CBL motion detectors, students attempt to match the provided graphs and equations with the output from the detector displayed on their calculators.
Students learn how volume, viscosity and slope are factors that affect the …
Students learn how volume, viscosity and slope are factors that affect the surface area that lava covers. Using clear transparency grids and liquid soap, students conduct experiments, make measurements and collect data. They also brainstorm possible solutions to lava flow problems as if they were geochemical engineers, and come to understand how the properties of lava are applicable to other liquids.
Isatou Ceesay observed a growing problem in her community where people increasingly …
Isatou Ceesay observed a growing problem in her community where people increasingly disposed of unwanted plastic bags, which accumulated into ugly heaps of trash. She found a way to be the agent of change by recycling the bags and transforming her community. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Use plastic bags to develop a new product (i.e. jump rope).
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
This task allows students to reason about the relative costs per pound …
This task allows students to reason about the relative costs per pound of the two fruits without actually knowing what the costs are. Students who find this difficult may add a scale to the graph and reason about the meanings of the ordered pairs. Comparing the two approaches in a class discussion can be a profitable way to help students make sense of slope.
Student groups use a "real" 3D coordinate system to plot points in …
Student groups use a "real" 3D coordinate system to plot points in space. Made from balsa wood or wooden dowels, the system has three axes at right angles and a plane (the XY plane) that can slide up and down the Z axis. Students are given several coordinates and asked to find these points in space. Then they find the coordinates of the eight corners of a box/cube with given dimensions.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to: translate between decimal and fraction notation, particularly when the decimals are repeating; create and solve simple linear equations to find the fractional equivalent of a repeating decimal; and understand the effect of multiplying a decimal by a power of 10.
This web-based graphing activity explores the similarities and differences between Velocity vs. …
This web-based graphing activity explores the similarities and differences between Velocity vs. Time and Position vs. Time graphs. It interactively accepts user inputs in creating "prediction graphs", then provides real-time animations of the process being analyzed. Learners will annotate graphs to explain changes in motion, respond to question sets, and analyze why the two types of graphs appear as they do. It is appropriate for secondary physical science courses, and may also be used for remediation in preparatory high school physics courses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. Users must register to access full functionality of all the tools available with SmartGraphs.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to: interpret a situation and represent the variables mathematically; select appropriate mathematical methods to use; explore the effects of systematically varying the constraints; interpret and evaluate the data generated and identify the break-even point, checking it for confirmation; and communicate their reasoning clearly.
This lab demonstrates Hooke's Law with the use of springs and masses. …
This lab demonstrates Hooke's Law with the use of springs and masses. Students attempt to determine the proportionality constant, or k-value, for a spring. They do this by calculating the change in length of the spring as different masses are added to it. The concept of a spring's elastic limit is also introduced, and the students test to makes sure the spring's elastic limit has not been reached during their lab tests. After compiling their data, they attempt to find an average value of the spring's k-value by measuring the slopes between each of their data points. Then they apply what they've learned about springs to how engineers might use that knowledge in the design of a toy that enables kids to jump 2-3 feet in the air.
OLO: Students will be able to explain how changing the y-intercept and …
OLO: Students will be able to explain how changing the y-intercept and slope will change the appearance of the line.This lesson is to help students develop the relationship between slope(m) and y-intercept(b) by using an interactive coordinate plane to explore. This is a 2 part lesson with some teacher clarification in between the 2 parts. The teacher component in between the 2 parts is to make sure the students fully understand the relationships developed in part 1 before applying it to part 2.If you have a Face to Face class and just want a print out/editable version for Google Classroom Click Here
http://www.artandlinearequations.weebly.comThis Project-Based Learning experience blends art and linear equations to help students …
http://www.artandlinearequations.weebly.comThis Project-Based Learning experience blends art and linear equations to help students make connections and extend their knowledge from a very basic understanding of y = mx + b to a true understanding of how slope and y intercept look differently in both equation form and graphed. Students get to use their creativity while at the same time make some major connections:1) How do equations that have opposite slopes look on a graph?2) What happens when two equations have the same slope but opposite y intercepts?3) How does scale factor affect the appearance of the art?I used this with my 6th grade honors class (preparing for Algebra I in 7th grade) but it would be appropriate for any middle school grade level and I even had a 5th grade teacher state that she would modify this lesson to teach graphing lines which I may also do with my standard 6th grade students!
Emma Lilian Todd was a self-taught engineer who tackled one of the …
Emma Lilian Todd was a self-taught engineer who tackled one of the greatest challenges of the early 1900s: designing an airplane. As an adult, typing up patents at the U.S. Patent Office, Lilian built inventions in her mind, including many designs for flying machines. However, they all seemed too impractical. Lilian knew she could design one that worked. She took inspiration from both nature and her many failures, driving herself to perfect the design that would eventually successfully fly. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Design a new mode of transportation (air, sea, or ground) or select a current mode of transportation and improve it then use household items to create a prototype of your new or updated invention.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.