Updating search results...

Search Resources

462 Results

View
Selected filters:
  • Physics
Ramp: Forces and Motion
Unrestricted Use
CC BY
Rating
0.0 stars

Explore forces and motion as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces. Graphs show forces, energy and work.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
10/01/2010
Random Walks and Diffusion, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Discrete and continuum modeling of diffusion processes in physics, chemistry, and economics. Topics include central limit theorems, continuous-time random walks, Levy flights, correlations, extreme events, mixing, renormalization, and percolation.

Subject:
Chemistry
Economics
Physical Science
Physics
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bazant, Martin
Date Added:
01/01/2006
Relative velocity: race on a moving sidewalk
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This simulation involves relative velocity in one dimension. It is an out-and-back race between two women. Mia runs on the moving sidewalk, while Brandi runs on the non-moving floor. Under what conditions is the race a tie? Under what conditions does Mia win? Under what conditions does Brandi win?

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Boston University
Author:
Andrew Duffy
Date Added:
08/10/2020
Relativistic Quantum Field Theory III, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A three-semester subject sequence on quantum field theory stressing the relativistic quantum field theories relevant to the physics of the Standard Model. 8.323 is a one-semester self-contained subject in quantum field theory. Concepts and basic techniques are developed through applications in elementary particle physics and condensed matter physics. Includes the basic tools of field theory required for phenomenological studies. Topics: Functional integral formulation of quantum mechanics and many-particle systems. Classical field theory, symmetries, and Noether's theorem. Quantization of scalar fields. Feynman graphs, analytic properties of amplitudes and unitarity of the S-matrix. Renormalization and renormalization group. Spinors and the Dirac equation. Quantization of Dirac fields. Supersymmetry. Quantization of abelian gauge fields. Calculations in quantum electrodynamics. Classical Yang-Mills fields. The Higgs phenomenon and a description of the Standard Model. 8.324 is the second term of the quantum field theory sequence. Develops in depth some of the topics discussed in 8.323 and introduces some advanced material. Topics: Quantization of nonabelian gauge theories. BRST symmetry. Perturbation theory anomalies. Renormalization and symmetry breaking. The renormalization group. Critical exponents and scalar field theory. Conformal field theory. 8.325 is the third and last term of the quantum field theory sequence. Its aim is the proper theoretical discussion of the physic

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Stewart, Iain
Date Added:
01/01/2007
Relativistic Quantum Field Theory I, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" 8.323, Relativistic Quantum Field Theory I, is a one-term self-contained subject in quantum field theory. Concepts and basic techniques are developed through applications in elementary particle physics, and condensed matter physics. "

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Guth, Alan
Date Added:
01/01/2008
Relativity, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Normally taken by physics majors in their sophomore year. Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; particle collisions. Relativity and electricity; Coulomb's law; magnetic fields. Brief introduction to Newtonian cosmology. Introduction to some concepts of General Relativity; principle of equivalence. The Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, Shapiro delay. This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Tegmark, Max
Date Added:
01/01/2006
Resistance in a Wire
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Wendy Adams
Date Added:
11/16/2007
Resonance
Unrestricted Use
CC BY
Rating
0.0 stars

For advanced undergraduate students: Observe resonance in a collection of driven, damped harmonic oscillators. Vary the driving frequency and amplitude, the damping constant, and the mass and spring constant of each resonator. Notice the long-lived transients when damping is small, and observe the phase change for resonators above and below resonance.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jonathan Olson
Kathy Perkins
Michael Dubson
Mindy Gratny
Patricia Loeblein
Date Added:
07/20/2011
Restriction Enzymes and DNA Fingerprinting
Read the Fine Print
Educational Use
Rating
0.0 stars

The discovery of restriction enzymes and their applications in DNA analysis has proven to be essential for biologists and chemists. This lesson focuses on restriction enzymes and their applications to DNA analysis and DNA fingerprinting. Use this lesson and its associated activity in conjunction with biology lessons on DNA analysis and DNA replication.

Subject:
Applied Science
Engineering
Genetics
Life Science
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Robo Clock
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn various topics associated with the circle through studying a clock. Topics include reading analog time, understanding the concept of rotation (clockwise vs. counter-clockwise), and identifying right angles and straight angles within circles. Many young students have difficulty telling time in analog format, especially with fewer analog clocks in use (compared to digital clocks). This includes the ability to convert time written in words to a number format, for example, making the connection between "quarter of an hour" to 15 minutes. Students also find it difficult to convert "quarter of an hour" to the number of degrees in a circle. This activity incorporates a LEGO® MINDSTORMS® NXT robot to help students distinguish and visualize the differences in clockwise vs. counter-clockwise rotation and right vs. straight angles, while learning how to tell time on an analog clock. To promote team learning and increase engagement, students work in teams to program and control the robot.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
Robot Bowling Speed Investigation
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a supplement to the activity outlined in Lesson 4 of Mystery Science's Force Olympics. In this activity, students will be bowling with a sphero ball to see how speed impacts force. This activity can be done over multiple days or could be done all in the same day. It could also be used as a supplement to the bumper bowling activity or a replacement activity.

Subject:
Computer Science
Physics
Material Type:
Lesson Plan
Author:
Taylor White
Date Added:
07/05/2019
Robotic Perimeter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn and practice how to find the perimeter of a polygonal shape. Using a ruler, they measure model rooms made of construction paper walls. They learn about other tools, such as a robot, that can help them take measurements. Using a robot built from a LEGO® MINDSTORMS® NXT kit that has been programmed to move along a wall and output the length of that wall, students record measurements and compare the perimeter value found with the robot to the perimeter found using a ruler. In both cases, students sketch maps to the scale of the model room and label the measured lengths. A concluding discussion explores the ways in which using a robot may be advantageous or disadvantageous, and real-world applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rezwana Uddin
Date Added:
09/18/2014
Rock and Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a challenge question that they must answer with scientific and mathematical reasoning. The challenge question is: "You have a large rock on a boat that is floating in a pond. You throw the rock overboard and it sinks to the bottom of the pond. Does the water level in the pond rise, drop or remain the same?" Students observe Archimedes' principle in action in this model recreation of the challenge question when a toy boat is placed in a container of water and a rock is placed on the floating boat. Students use terminology learned in the classroom as well as critical thinking skills to derive equations needed to answer this question.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Rocking the Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

The concepts of stability and equilibrium are introduced while students learn how these ideas are related to the concept of center of mass. They gain further understanding when they see, first-hand, how equilibrium is closely related to an object's center of mass. In an associated literacy activity, students learn about motion capture technology, the importance of center of gravity in animation and how use the concept of center of gravity in writing an action scene.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
SCUBA, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will thoroughly educate the successful student with the knowledge and skills necessary to be a certified beginning SCUBA diver. The prerequisite for the course is passing the MIT SCUBA swim test and demonstrating a "comfort level" in the water. At the end of the class, students will attempt to pass the certification exam to become certified divers. The class is taught in two parts each week: a classroom session and a pool session. The classroom sessions along with the reading material will provide the student with the knowledge necessary to pass the written exam. At the pool, the water skills are taught in progressions that build on the previous skills, making the difficult skills seem easy.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Taylor, Halston
Date Added:
01/01/2007
Sailing, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this class is to tell you something about our Tech Dinghy and how to sail it. This OCW site is arranged as a series of skills, explained both with lecture notes and videos. Please do not think of these skill checks as tests, but instead, as measures of your understanding of our sport. We don‰ŰŞt expect perfection from our beginners, but only that our members be able to safely handle the boats and themselves on the Charles. For those who wish it, there will be much more that can be learned about other boats and other waters, but what can be learned here will provide the basis to build on. For more detail, a text on sailing the Tech Dinghy is provided in the readings section.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Charles, Francis
Date Added:
01/01/2007
Saltwater Circuit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.

Subject:
Applied Science
Chemistry
Ecology
Engineering
Environmental Science
Forestry and Agriculture
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Scaling the Map
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to determine map distances and areas using the map scale. They get a feel for how much an area represents on the map in relation to the size they are suggesting for their underground caverns to shelter the Alabraska population.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Science, Literacy, Arts iNtegration in the Twenty-first century (SLANT) Summer Institute
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This wiki page documents the activities, articles, links, and resources used, as well as the teacher created Open Educational Resources (OER) during the SLANT Institute.On July 19-23, 2010 San Francisco Unified School District (SFUSD), in collaboration with the California Academy of Sciences, the de Young Museum, 826 Valencia, KQED, ISKME, and the Exploratorium launched the Science, Literacy, Arts iNtegration in the Twenty-first century (SLANT) Summer Institute for Pre-k through 8th Grade Teachers to explore and investigate science and art integration. Participants received resources to use in the classroom and on field trips as they plan lessons with grade level colleagues.

Subject:
Applied Science
Art History
Arts and Humanities
Biology
Chemistry
Engineering
Environmental Science
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Homework/Assignment
Lesson Plan
Reading
Teaching/Learning Strategy
Provider:
ISKME
Author:
Megan Simmons
Date Added:
02/16/2018
The Science of Soap Bubbles: Part 1 and Part 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Part One of this video lesson will explore the science that explains soap bubbles, as well as the application of this knowledge to other areas, such as architecture and biology. We first introduce the concept of surface tension. In Part Two of this video lesson, students will learn where the colors of soap bubbles come from and also learn what soap bubbles and telescopes have in common. The students will first make a connection between light and waves waves and will then go on to explore various characteristics of waves through a series of classroom activities.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Paola Rebusco
Date Added:
04/07/2020