Updating search results...

Search Resources

462 Results

View
Selected filters:
  • Physics
The Science of Soap Bubbles: Part 1 and Part 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Part One of this video lesson will explore the science that explains soap bubbles, as well as the application of this knowledge to other areas, such as architecture and biology. We first introduce the concept of surface tension. In Part Two of this video lesson, students will learn where the colors of soap bubbles come from and also learn what soap bubbles and telescopes have in common. The students will first make a connection between light and waves waves and will then go on to explore various characteristics of waves through a series of classroom activities.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Paola Rebusco
Date Added:
02/15/2018
The Science of Spring Force
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use data acquisition equipment to learn about force and displacement in regard to simple and complex machines. In the engineering world, materials and systems are tested by applying forces and measuring the resulting displacements. The relationship between the force applied on a material, and its resulting displacement, is a distinct property of the material, which is measured in order to evaluate the material for correct use in structures and machines.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Irina Igel
Ronald Poveda
Date Added:
09/18/2014
The Search for Surfactants: What Is the Best Soap?
Rating
0.0 stars

Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.

Subject:
Algebra
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Author:
Shawn Richard
Lauchlin Blue
Date Added:
08/11/2020
Security System Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply everything they have learned about light properties and laser technologies to designing, constructing and presenting laser-based security systems that protect the school's mummified troll. In the associated activity, students "test their mettle" by constructing their security system using a PVC pipe frame, lasers and mirrors. In the lesson, students "go public" by creating informational presentations that explain their systems, and serve as embedded assessment, testing each student's understanding of light properties.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Seeing Motion
Rating
0.0 stars

Explore your own straight-line motion using a motion sensor to generate distance versus time graphs of your own motion. Learn how changes in speed and direction affect the graph, and gain an understanding of how motion can be represented on a graph.

Subject:
Algebra
Education
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Author:
The Concord Consortium
Date Added:
08/11/2020
Seeing Your Retina
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this quick optics activity, learners use a dim point of light (a disassembled Mini MagLite and dowel set-up) to cast a shadow of the blood supply in their retina onto the retina itself. This allows learners to see the blood supply of their retina and even their blind spot. Learners are encouraged to wear eye protection.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Selected Topics in Theoretical Particle Physics: Branes and Gauge Theory Dynamics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to branes in string theory and their world volume dynamics. Instead of looking at the theory from the point of view of the world-sheet observer, we will approach the problem from the point of view of an observer which lives on a brane. Instead of writing down conformal field theory on the worldsheet and studying the properties of these theories, we will look at various branes in string theory and ask how the physics on their world-volume looks like.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hanany, Amihay
Date Added:
01/01/2004
Seminar: Fusion and Plasma Physics, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Lectures and discussion introducing the range of topics relevant to plasma physics and fusion engineering. Introductory discussion of the economic and ecological motivation for the development of fusion power. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Tour of Plasma Science and Fusion Center experimental facilities.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Molvig, Kim
Date Added:
01/02/2010
Seminar in Geophysics: Thermal and Chemical Evolution of the Earth, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main objective of this cross disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.

Subject:
Atmospheric Science
Geology
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Van Der Hilst, Robert
Date Added:
01/01/2005
Sensation And Perception, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate, or are they acquired by experience? (And what does it even mean to call a concept 'innate'?) Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course will include guest lectures by Professors."

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Balas, Benjamin
Date Added:
01/01/2009
Shaken and Stirred: Scott Snibbe
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

SPARK follows Scott Snibbe at work on an installation piece Blow Up at the Yerba Buena Center for the Arts in San Francisco, and through his studio as he discusses his installation, interactive, and net art projects and some of the ideas underlying them. This Educator Guide is about the digital and new media art and the historic interplay between art and science and technology.

Subject:
Arts and Humanities
Physical Science
Physics
Visual Arts
Material Type:
Lesson Plan
Provider:
KQED Education
Provider Set:
KQED Education Network
Date Added:
01/19/2005
Signals and Systems, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.

Subject:
Applied Science
Engineering
Information Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dennis Freeman
Date Added:
01/01/2011
Simple Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Simple Machines and Modern Day Engineering Analogies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply the mechanical advantages and problem-solving capabilities of six types of simple machines (wedge, wheel and axle, lever, inclined plane, screw, pulley) as they discuss modern structures in the spirit of the engineers and builders of the great pyramids. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brett S. Ellison
Denise Carlson
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
SmartGraphs: Describing Velocity
Rating
0.0 stars

This web-based graphing activity explores the similarities and differences between Velocity vs. Time and Position vs. Time graphs. It interactively accepts user inputs in creating "prediction graphs", then provides real-time animations of the process being analyzed. Learners will annotate graphs to explain changes in motion, respond to question sets, and analyze why the two types of graphs appear as they do. It is appropriate for secondary physical science courses, and may also be used for remediation in preparatory high school physics courses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. Users must register to access full functionality of all the tools available with SmartGraphs.

Subject:
Algebra
Education
Functions
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Author:
The Concord Consortium
National Science Foundation
Date Added:
08/11/2020
Soap Bubbles
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Learners explore three-dimensional geometric frames including cubes and tetrahedrons, as they create bubble wands with pipe cleaners and drinking straws. Then they investigate how soap film flows into a state of minimum energy when they lift the wand up from the bubble solution. Learners also see how light reflection and interference create shimmering colors in the bubbles.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Soaring in The Wind: The Science of Kite Flying
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Flying kites is a popular hobby in Malaysia and very much part of the culture. This lesson looks at kite flying science to introduce basic ideas related to the dynamics of kite flying and can be used as an extension of a physics lesson, especially after the students have learned about forces. It will focus on some of the concepts such as weight, thrust, lift and drag. It is a fun way to introduce the forces acting upon a kite and the scientific principles that allow a kite to fly. The lesson is suitable for students in secondary school. It will help students relate to the effect of forces and gives an introduction to the science of flight. As an added value, the video will also share some information about Malaysian kites which are “tailless”. The Malaysian kite is called “Wau” (pronounced “wow”), and there are many distinctive designs since each Malaysian state has its own official Wau. Malaysia has 14 states. The break activities included are to be conducted in the classroom, and students are to work in small groups on the questions given in the lesson. Students are to carry out two simple experiments to study how air flows on a kite.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Roselainy Binti Abdul Rahman, Habibah Norehan Binti Hj Haron, Nor Azizi Binti Mohamed, Salwani Binti Mohd. Daud, Norzaida Binti Abas, Hafiza Binti Abas
Date Added:
02/15/2018
Soaring in The Wind: The Science of Kite Flying
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Flying kites is a popular hobby in Malaysia and very much part of the culture. This lesson looks at kite flying science to introduce basic ideas related to the dynamics of kite flying and can be used as an extension of a physics lesson, especially after the students have learned about forces. It will focus on some of the concepts such as weight, thrust, lift and drag. It is a fun way to introduce the forces acting upon a kite and the scientific principles that allow a kite to fly. The lesson is suitable for students in secondary school. It will help students relate to the effect of forces and gives an introduction to the science of flight. As an added value, the video will also share some information about Malaysian kites which are “tailless”. The Malaysian kite is called “Wau” (pronounced “wow”), and there are many distinctive designs since each Malaysian state has its own official Wau. Malaysia has 14 states. The break activities included are to be conducted in the classroom, and students are to work in small groups on the questions given in the lesson. Students are to carry out two simple experiments to study how air flows on a kite.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Roselainy Binti Abdul Rahman, Habibah Norehan Binti Hj Haron, Nor Azizi Binti Mohamed, Salwani Binti Mohd. Daud, Norzaida Binti Abas, Hafiza Binti Abas
Date Added:
04/07/2020
Solenoids
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson discusses solenoids. Students learn how to calculate the magnetic field along the axis of a solenoid and complete an activity exploring the magnetic field of a metal slinky. Solenoids form the basis for the magnet of an MRI. Exploring the properties of this solenoid helps students understand the MRI machine.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Sound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the connections between the science of sound waves and engineering design for sound environments. Through three lessons, students come to better understand sound waves, including how they change with distance, travel through different mediums, and are enhanced or mitigated in designed sound environments. They are introduced to audio engineers who use their expert scientific knowledge to manipulate sound for music and film production. They see how the invention of the telephone pioneered communications engineering, leading to today's long-range communication industry and its worldwide impact. Students analyze materials for sound properties suitable for acoustic design, learning about the varied environments created by acoustical engineers. Hands-on activities include modeling the placement of microphones to create a specific musical image, modeling and analyzing a string telephone, and applyling what they've learned about sound waves and materials to model a controlled sound room.

Subject:
Applied Science
Career and Technical Education
Education
Engineering
Film and Music Production
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014