This unit on weather, climate, and water cycling is broken into four …
This unit on weather, climate, and water cycling is broken into four separate lesson sets. In the first two lesson sets, students explain small-scale storms. In the third and fourth lesson sets, students explain mesoscale weather systems and climate-level patterns of precipitation. Each of these two parts of the unit is grounded in a different anchoring phenomenon.
The unit starts out with anchoring students in the exploration of a series of videos of hailstorms from different locations across the country at different times of the year. The videos show that pieces of ice of different sizes (some very large) are falling out of the sky, sometimes accompanied by rain and wind gusts, all on days when the temperature of the air outside remained above freezing for the entire day. These cases spark questions and ideas for investigations, such as investigating how ice can be falling from the sky on a warm day, how clouds form, why some clouds produce storms with large amounts of precipitation and others don’t, and how all that water gets into the air in the first place.
The second half of the unit is anchored in the exploration of a weather report of a winter storm that affected large portions of the midwestern United States. The maps, transcripts, and video that students analyze show them that the storm was forecasted to produce large amounts of snow and ice accumulation in large portions of the northeastern part of the country within the next day. This case sparks questions and ideas for investigations around trying to figure out what could be causing such a large-scale storm and why it would end up affecting a different part of the country a day later.
In this part of the unit, students are exploring how global temperatures …
In this part of the unit, students are exploring how global temperatures have changed over the past hundred years. Students will examine tables and graphs about global temperatures and carbon dioxide levels, human consumption of food, and human consumption of natural resources. They will find patterns in the graphs. Based on this data, students will construct an argument about how human activities (increase in population and consumption of natural resources) cause global temperatures to increase.
Survey of atmospheric and oceanic phenomena including the discussion of observations and …
Survey of atmospheric and oceanic phenomena including the discussion of observations and theoretical interpretations. Topics covered include: monsoons; El Nino; planetary waves; atmospheric synoptic eddies and fronts; gulf stream rings; hurricanes; surface and internal gravity waves; and tides. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.
Climagraphs can tell us about the seasonal shifts in climate due to …
Climagraphs can tell us about the seasonal shifts in climate due to climate change. Changes in growing season and water balance in the Great Lakes region will have economic impacts.
What is the distinction between weather and climate? As a way to …
What is the distinction between weather and climate? As a way to understand climate, students interpret climagraphs, and read about climate variability. An extension lesson has students comparing climate data from different regions in the United States.
CK-12 Earth Science For Middle School covers the study of Earth - …
CK-12 Earth Science For Middle School covers the study of Earth - its minerals and energy resources, processes inside and on its surface, its past, water, weather and climate, the environment and human actions, and astronomy.
Objective SWBAT explain a model of heating to describe the uneven heating …
Objective SWBAT explain a model of heating to describe the uneven heating of Earth's surface as well as how Earth's atmosphere effects incoming solar radiation.
Big Idea This lesson explores heat transfer by radiation, uneven heating of Earth's surface and importance of Earth's atmosphere all in one go.
Meg set out to climb up and investigate the rain forest tree …
Meg set out to climb up and investigate the rain forest tree canopies — and to be the first scientist to do so. But she encountered challenge after challenge. Male teachers would not let her into their classrooms, the high canopy was difficult to get to, and worst of all, people were logging and clearing the forests. Meg never gave up or gave in. She studied, invented, and persevered, not only creating a future for herself as a scientist, but making sure that the rainforests had a future as well. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Your community has many different areas to explore - it might be a park, a grocery store, a forest, or an alley. For some people, it might be difficult to explore these areas because they may have differing abilities. Select one area in your community, and come up with a plan to build a way for it to be more accessible to everyone.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
The true story of how Momofuko Ando was inspired to create one …
The true story of how Momofuko Ando was inspired to create one of the world’s most popular foods after seeing long lines of hungry people waiting for a simple bowl of ramen following World War II. He dreamed about making a new kind of ramen noodle soup that was quick, convenient, and tasty for the hungry people because he believed that peace follows from a hungry stomach. With persistence, creativity, and a little inspiration, Ando succeeded. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Develop a food product (a new food, tool, or invention, et al) to help increase access to food in your community.
This lesson will discuss the details for a possible future manned mission …
This lesson will discuss the details for a possible future manned mission to Mars. The human risks are discussed and evaluated to minimize danger to astronauts. A specialized launch schedule is provided and the different professions of the crew are discussed. Once on the surface, the crew's activities and living area will be covered, as well as how they will make enough fuel to make it off the Red Planet and return home.
OpenSciEd middle school is NGSS-aligned science curriculum. Designed for all students and …
OpenSciEd middle school is NGSS-aligned science curriculum. Designed for all students and teachers, OpenSciEd includes student-facing materials as well as teacher guides. As with most instructional materials, excellent professional learning for teachers should be provided. For more information in Michigan contact the Michigan Mathematics and Science Leadership Network, starrm@mimathandscience.org
In this activity, learners create a tornado in a bottle to observe …
In this activity, learners create a tornado in a bottle to observe a spiraling, funnel-shaped vortex. A simple connector device allows water to drain from a 2-liter bottle into a second bottle. Learners can observe the whirling water and then repeat the process by inverting the bottle. Use this activity to talk about surface tension, pressure, gravity, friction, angular momentum, and centripetal force.
Students are introduced to the basics of the Earth's weather. Concepts include …
Students are introduced to the basics of the Earth's weather. Concepts include fundamental causes of common weather phenomena such as temperature changes, wind, clouds, rain and snow. The different factors that affect the weather and the instruments that measure weather data are also addressed.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.