Updating search results...

Search Resources

31 Results

View
Selected filters:
  • MI.SS.MS.PS2.3 - Ask questions about data to determine the factors that affect the stre...
8.3 Forces at a Distance
Unrestricted Use
CC BY
Rating
0.0 stars

This unit launches with a slow-motion video of a speaker as it plays music. In the previous unit, students developed a model of sound. This unit allows students to investigate the cause of a speaker’s vibration in addition to the effect.

Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system. Along the way, students manipulate the components (e.g. changing the strength of the magnet, number of coils, direction of current) to see how this technology can be modified and applied to a variety of contexts, like MagLev trains, junkyard magnets, and electric motors.

Subject:
Physical Science
Material Type:
Activity/Lab
Assessment
Author:
BSCS Science Learning Joel Donna
BSCS Science Learning Kris Grymonpre
BSCS Science Learning Lindsey Mohan
Chicago Public Schools Betty Stennett
MA Thomas Clayton
Michigan State University Joseph Krajcik
Michigan State University Katie Van Horne
NJ Christina Schwarz
Northwestern University Will Reed
The Dana Center at University of Texas – Austin Michael Novak
University of Wisconsin River Falls Shelly Ledoux
Zoë Buck Bracey
Date Added:
08/04/2020
Battery Voltage
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/16/2007
The Boy Who Harnessed the Wind Resouces
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using scrap metal and spare parts, William Kamkwamba created a windmill to harness the wind and bring electricity and running water to his Malawian village. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Develop a way to harness the wind by designing with Strawbees.

A document is included in the resources folder that lists the complete standards-alignment for this book activity.

Subject:
Applied Science
Arts and Humanities
English Language Arts
Mathematics
Reading Literature
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
REMC Association of Michigan
Provider Set:
Promoting STEM in Literature
Author:
REMC Association of Michigan
Date Added:
04/18/2020
The Boy Who Thought Outside the Box Resouces - Promoting STEM Through Literature (PSTL)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Ralph Baer’s family fled Nazi Germany for the US when he was a child. Using wartime technology, Baer thought outside the box and transformed the television into a vehicle for gaming. His invention was the birth of the first home console, the Odyssey, a precursor to the Atari gaming system. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenges: (1) Think outside the box. What’s something you use everyday, but not for its “intended” purpose? Examples: A broom to clean the snow off your car windshield, a trash bag as a sled. Now, think of a problem you might have at school, home, et al. Invent an item that would solve this problem. (2) Let’s think outside the box! Design the latest and greatest technology for kids to hit the market! Make it the *most* fun anyone has ever had. You may NOT use anything on the market - any technology currently on the market is off limits. Use your imagination, do not put limitations on it, and be as creative as you can. (3) Use household items to create a prototype of your new invention.

A document is included in the resources folder that lists the complete standards-alignment for this book activity.

Subject:
Applied Science
Arts and Humanities
English Language Arts
Mathematics
Reading Literature
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
REMC Association of Michigan
Provider Set:
Promoting STEM in Literature
Author:
REMC Association of Michigan
Date Added:
04/18/2020
CK-12 Physical Science Concepts for Middle School
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

CK-12 Physical Science Concepts covers the study of physical science for middle school students. The 5 chapters provide an introduction to physical science, matter, states of matter, chemical interactions and bonds, chemical reactions, motion and forces, and the types and characteristics of energy.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Jean Brainard, Ph.D.
Date Added:
11/01/2012
Clean Up This Mess
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to design a method for separating steel from aluminum based on magnetic properties as is frequently done in recycling operations. To complicate the challenge, the magnet used to separate the steel must be able to be switched off to allow for the recollection of the steel. Students must ultimately design, test, and present an effective electromagnet.

Subject:
Applied Science
Ecology
Engineering
Forestry and Agriculture
Life Science
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Drawing Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Eddy Currents
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity related to magnetism and electricity, learners discover that a magnet falls more slowly through a metallic tube than it does through a nonmetallic tube. Use this activity to illustrate how eddy currents in an electrical conductor create a magnetic field that exerts an opposing force on the falling magnet, which makes it fall at a slower rate. This activity guide also includes demonstration instructions involving two thick, flat pieces of aluminum to illustrate the same principle.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Electroscope
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity from the Exploratorium provides instructions to build an electroscope, a device that detects electrical charge. Common, inexpensive materials including film canisters, 3-M Scotch Magic™ Tape, and a plastic comb are used to show the attractions and repulsions between positively and negatively charged objects. The site also provides an explanation of the results and suggestions for extension activities.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
11/09/2006
Faraday's Electromagnetic Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
10/22/2006
Hand Battery
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity about chemistry and electricity, learners form a battery by placing their hands onto plates of different metals. Learners detect the current by reading a DC microammeter attached to the metal plates. Learners experiment with different metals to find out what combination produces the most current as well as testing what happens when they press harder on the plates or wet their hands. Learners also investigate what happens when they wire the plates to a voltmeter.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Handout - Magnetic Problems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A series of problems for students to solve using their knowledge of magnetism and electromagnetism. Questions start off easy (separating steel/aluminum cans) and get harder.

Subject:
Physical Science
Material Type:
Homework/Assignment
Author:
Share My Lesson Science Team
Date Added:
06/12/2021
Hedy LaMarr's Double Life Resouces - Promoting STEM Through Literature (PSTL)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Meet savvy scientist and inventor Hedy Lamarr, also known for her career as a glamorous international movie star. Dubbed "The Most Beautiful Woman in the World," Hedy actually preferred spending time creating inventions in her workshop to strutting down the red carpet. Hedy co-invented the technology known as frequency hopping, which turned out to be one of the most important scientific breakthroughs of the twentieth century! Today's cell phone, computers, and other electronic devices would be more vulnerable to hacking without the groundbreaking system discovered by a world-famous actress and gifted inventor. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Create small groups. Pass out one of the challenges listed in the lesson plan/book card to each group for them to come up with an invention that will solve the problem at hand.

Subject:
Applied Science
Arts and Humanities
English Language Arts
Mathematics
Reading Literature
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
REMC Association of Michigan
Provider Set:
Promoting STEM in Literature
Author:
REMC Association of Michigan
Date Added:
04/18/2020
Lion Lights Resources - Promoting STEM Through Literature (PSTL)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Richard grew up in Kenya as a Maasai boy, herding his family’s cattle, which represented their wealth and livelihood. Richard’s challenge was to protect their cattle from the lions who prowled the night just outside the barrier of acacia branches that surrounded the farm’s boma, or stockade. Though not well-educated, 12-year-old Richard loved tinkering with electronics. Using salvaged components, spending $10, he surrounded the boma with blinking lights, and the system works; it keeps lions away. His invention, Lion Lights, is now used in Africa, Asia, and South America to protect farm animals from predators. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Your challenge is to use broken or old technology and other available resources to create a prototype that can be used to protect your home. This could involve tinkering, hacking, or redesigning the components of the technology to meet your needs.

A document is included in the resources folder that lists the complete standards-alignment for this book activity.

Subject:
Applied Science
Arts and Humanities
English Language Arts
Mathematics
Reading Literature
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
REMC Association of Michigan
Provider Set:
Promoting STEM in Literature
Author:
REMC Association of Michigan
Date Added:
04/18/2023
MEECS Energy Resources (2017): Lesson 4 - Non-Renewable Energy Choices and Impacts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The advantages and disadvantages of different kinds of non-renewable energy sources are the focus of this lesson. Students match different kinds of energy resources with their advantages and disadvantages, and then discuss whether these advantages and disadvantages are economic,ecological, or social. As an extension students identify the environmental impacts of their family’s electricity usage using EPA’s Power Profiler web site. The next lesson will deal with renewable resources.

Subject:
Environmental Science
Environmental Studies
Physical Science
Material Type:
Lesson Plan
Unit of Study
Author:
Michigan Geographic Alliance
Date Added:
02/28/2024
Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Magnetic Fields and Distance
Rating
0.0 stars

Students measure the relative intensity of a magnetic field as a function of distance. They place a permanent magnet selected distances from a compass, measure the deflection, and use the gathered data to compute the relative magnetic field strength. Based on their findings, students create mathematical models and use the models to calculate the field strength at the edge of the magnet. They use the periodic table to predict magnetism. Finally, students create posters to communicate the details their findings. This activity guides students to think more deeply about magnetism and the modeling of fields while practicing data collection and analysis. An equations handout and two grading rubrics are provided.

Subject:
Algebra
Chemistry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Author:
Sabina Schill
Ralph Cox
Date Added:
08/11/2020
Magnetic Materials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014