This unit launches with a slow-motion video of a speaker as it …
This unit launches with a slow-motion video of a speaker as it plays music. In the previous unit, students developed a model of sound. This unit allows students to investigate the cause of a speaker’s vibration in addition to the effect.
Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system. Along the way, students manipulate the components (e.g. changing the strength of the magnet, number of coils, direction of current) to see how this technology can be modified and applied to a variety of contexts, like MagLev trains, junkyard magnets, and electric motors.
Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
Using scrap metal and spare parts, William Kamkwamba created a windmill to …
Using scrap metal and spare parts, William Kamkwamba created a windmill to harness the wind and bring electricity and running water to his Malawian village. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Develop a way to harness the wind by designing with Strawbees.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
Ralph Baer’s family fled Nazi Germany for the US when he was …
Ralph Baer’s family fled Nazi Germany for the US when he was a child. Using wartime technology, Baer thought outside the box and transformed the television into a vehicle for gaming. His invention was the birth of the first home console, the Odyssey, a precursor to the Atari gaming system. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenges: (1) Think outside the box. What’s something you use everyday, but not for its “intended” purpose? Examples: A broom to clean the snow off your car windshield, a trash bag as a sled. Now, think of a problem you might have at school, home, et al. Invent an item that would solve this problem. (2) Let’s think outside the box! Design the latest and greatest technology for kids to hit the market! Make it the *most* fun anyone has ever had. You may NOT use anything on the market - any technology currently on the market is off limits. Use your imagination, do not put limitations on it, and be as creative as you can. (3) Use household items to create a prototype of your new invention.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
CK-12 Physical Science Concepts covers the study of physical science for middle …
CK-12 Physical Science Concepts covers the study of physical science for middle school students. The 5 chapters provide an introduction to physical science, matter, states of matter, chemical interactions and bonds, chemical reactions, motion and forces, and the types and characteristics of energy.
Students are challenged to design a method for separating steel from aluminum …
Students are challenged to design a method for separating steel from aluminum based on magnetic properties as is frequently done in recycling operations. To complicate the challenge, the magnet used to separate the steel must be able to be switched off to allow for the recollection of the steel. Students must ultimately design, test, and present an effective electromagnet.
Students use a compass and a permanent magnet to trace the magnetic …
Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.
In this activity related to magnetism and electricity, learners discover that a …
In this activity related to magnetism and electricity, learners discover that a magnet falls more slowly through a metallic tube than it does through a nonmetallic tube. Use this activity to illustrate how eddy currents in an electrical conductor create a magnetic field that exerts an opposing force on the falling magnet, which makes it fall at a slower rate. This activity guide also includes demonstration instructions involving two thick, flat pieces of aluminum to illustrate the same principle.
This activity from the Exploratorium provides instructions to build an electroscope, a …
This activity from the Exploratorium provides instructions to build an electroscope, a device that detects electrical charge. Common, inexpensive materials including film canisters, 3-M Scotch Magic™ Tape, and a plastic comb are used to show the attractions and repulsions between positively and negatively charged objects. The site also provides an explanation of the results and suggestions for extension activities.
Play with a bar magnet and coils to learn about Faraday's law. …
Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!
This is the story of how Les Paul created the world's first …
This is the story of how Les Paul created the world's first solid-body electric guitar, countless other inventions that changed modern music, and one truly epic career in rock and roll. How to make a microphone? A broomstick, a cinderblock, a telephone, a radio. How to make an electric guitar? A record player's arm, a speaker, some tape. How to make a legendary inventor? A few tools, a lot of curiosity, and an endless faith in what is possible, this unforgettable biography will resonate with inventive readers young and old.
In this activity about chemistry and electricity, learners form a battery by …
In this activity about chemistry and electricity, learners form a battery by placing their hands onto plates of different metals. Learners detect the current by reading a DC microammeter attached to the metal plates. Learners experiment with different metals to find out what combination produces the most current as well as testing what happens when they press harder on the plates or wet their hands. Learners also investigate what happens when they wire the plates to a voltmeter.
A series of problems for students to solve using their knowledge of …
A series of problems for students to solve using their knowledge of magnetism and electromagnetism. Questions start off easy (separating steel/aluminum cans) and get harder.
Meet savvy scientist and inventor Hedy Lamarr, also known for her career …
Meet savvy scientist and inventor Hedy Lamarr, also known for her career as a glamorous international movie star. Dubbed "The Most Beautiful Woman in the World," Hedy actually preferred spending time creating inventions in her workshop to strutting down the red carpet. Hedy co-invented the technology known as frequency hopping, which turned out to be one of the most important scientific breakthroughs of the twentieth century! Today's cell phone, computers, and other electronic devices would be more vulnerable to hacking without the groundbreaking system discovered by a world-famous actress and gifted inventor. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Create small groups. Pass out one of the challenges listed in the lesson plan/book card to each group for them to come up with an invention that will solve the problem at hand.
Richard grew up in Kenya as a Maasai boy, herding his family’s …
Richard grew up in Kenya as a Maasai boy, herding his family’s cattle, which represented their wealth and livelihood. Richard’s challenge was to protect their cattle from the lions who prowled the night just outside the barrier of acacia branches that surrounded the farm’s boma, or stockade. Though not well-educated, 12-year-old Richard loved tinkering with electronics. Using salvaged components, spending $10, he surrounded the boma with blinking lights, and the system works; it keeps lions away. His invention, Lion Lights, is now used in Africa, Asia, and South America to protect farm animals from predators. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Your challenge is to use broken or old technology and other available resources to create a prototype that can be used to protect your home. This could involve tinkering, hacking, or redesigning the components of the technology to meet your needs.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
The advantages and disadvantages of different kinds of non-renewable energy sources are …
The advantages and disadvantages of different kinds of non-renewable energy sources are the focus of this lesson. Students match different kinds of energy resources with their advantages and disadvantages, and then discuss whether these advantages and disadvantages are economic,ecological, or social. As an extension students identify the environmental impacts of their family’s electricity usage using EPA’s Power Profiler web site. The next lesson will deal with renewable resources.
Students visualize the magnetic field of a strong permanent magnet using a …
Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.
Students measure the relative intensity of a magnetic field as a function …
Students measure the relative intensity of a magnetic field as a function of distance. They place a permanent magnet selected distances from a compass, measure the deflection, and use the gathered data to compute the relative magnetic field strength. Based on their findings, students create mathematical models and use the models to calculate the field strength at the edge of the magnet. They use the periodic table to predict magnetism. Finally, students create posters to communicate the details their findings. This activity guides students to think more deeply about magnetism and the modeling of fields while practicing data collection and analysis. An equations handout and two grading rubrics are provided.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.