This lesson uses the fundamentals of protein synthesis as a context for …
This lesson uses the fundamentals of protein synthesis as a context for investigating the closest living relative to Tyrannosaurus rex and evaluating whether or not paleontologist and dinosaur expert, Jack Horner, will be able to "create" live dinosaurs in the lab. The first objective is for students to be able to access and properly utilize the NIH's protein sequence database to perform a BLAST, using biochemical evidence to determine T rex's closest living relative. The second objective is for students to be able to explain and evaluate Jack Horner's plans for creating live dinosaurs in the lab. The main prerequisite for the lesson is a basic understanding of protein synthesis, or the flow of information in the cell from DNA to RNA during transcription and then from RNA to protein during translation
Meg set out to climb up and investigate the rain forest tree …
Meg set out to climb up and investigate the rain forest tree canopies — and to be the first scientist to do so. But she encountered challenge after challenge. Male teachers would not let her into their classrooms, the high canopy was difficult to get to, and worst of all, people were logging and clearing the forests. Meg never gave up or gave in. She studied, invented, and persevered, not only creating a future for herself as a scientist, but making sure that the rainforests had a future as well. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Your community has many different areas to explore - it might be a park, a grocery store, a forest, or an alley. For some people, it might be difficult to explore these areas because they may have differing abilities. Select one area in your community, and come up with a plan to build a way for it to be more accessible to everyone.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
Students explore their peripheral vision by reading large letters on index cards. …
Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.
Building on their understanding of graphs, students are introduced to random processes …
Building on their understanding of graphs, students are introduced to random processes on networks. They walk through an illustrative example to see how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students. This demonstrates how scientists and engineers use mathematics to model and simulate random processes on complex networks. Topics covered include random processes and modeling disease spread, specifically the SIR (susceptible, infectious, resistant) model.
This video aims to provide an illustrative lesson about the respiratory system …
This video aims to provide an illustrative lesson about the respiratory system in birds and how the adaptations of that system over time have made it different than that of other living creatures, especially mammals. Birds are omnipresent in our lives, and students will come to understand and appreciate the fascinating inner workings of these beautiful creatures. This lesson discusses avian features and differences for 20 to 25 minutes, with approximately 20 minutes of in-class student activities.
This activity investigates causes of disease and ways to control malaria. GeoInquiries …
This activity investigates causes of disease and ways to control malaria.
GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.
This lesson introduces students to the concepts of evolution, specifically the evolution …
This lesson introduces students to the concepts of evolution, specifically the evolution of humans. So often our students assume that humans are well adapted to our environments because we are in control of our evolutionary destiny. The goal is to change these types of misconceptions and get our students to link the concepts learned in their DNA, protein synthesis, and genetics units to their understanding of evolution. Students will also discover that humans are still evolving and learn about the traits that are more recent adaptations to our environment. The lesson is designed to take two one-hour class periods to complete. The activities will allow students to draw connections between environmental pressures and selected traits, both through data analysis and modeling. Most activities can be done without any special materials, although the Modeling Natural Selection activity needs either a tri-colored pasta, or tricolored beans, to be completed effectively.
This lesson introduces students to the concepts of evolution, specifically the evolution …
This lesson introduces students to the concepts of evolution, specifically the evolution of humans. So often our students assume that humans are well adapted to our environments because we are in control of our evolutionary destiny. The goal is to change these types of misconceptions and get our students to link the concepts learned in their DNA, protein synthesis, and genetics units to their understanding of evolution. Students will also discover that humans are still evolving and learn about the traits that are more recent adaptations to our environment. The lesson is designed to take two one-hour class periods to complete. The activities will allow students to draw connections between environmental pressures and selected traits, both through data analysis and modeling. Most activities can be done without any special materials, although the Modeling Natural Selection activity needs either a tri-colored pasta, or tricolored beans, to be completed effectively.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.