Updating search results...

Search Resources

462 Results

View
Selected filters:
  • Physics
Physics of Microfabrication: Front End Processing, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamental principles of the processes used in the fabrication of silicon monolithic integrated circuits. Physical models of bulk crystal growth, thermal oxidation, solid-state diffusion, ion implantation, epitaxial deposition, chemical vapor deposition, and physical vapor deposition. Refractory metal silicides, plasma and reactive ion etching, and rapid thermal processing. Process modeling and simulation. Technological limitations on integrated circuit design and fabrication. VLSI fundamentals.

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hoyt, Judy
Date Added:
01/01/2004
The Physics of Pool
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment. In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.

Subject:
Geometry
Mathematics
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Joseph A. Formaggio
Date Added:
04/07/2020
The Physics of Pool
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment. In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.

Subject:
Geometry
Mathematics
Physical Science
Physics
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Joseph A. Formaggio
Date Added:
02/15/2018
Physics of Rock Climbing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

SP.255 is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
High School Highlights
Author:
David Custer
Date Added:
12/13/2019
Physics of Rock Climbing, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Custer, David
Date Added:
01/01/2006
Physics of Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the physics utilized by engineers in designing today's roller coasters, including potential and kinetic energy, friction, and gravity. First, students learn that all true roller coasters are completely driven by the force of gravity and that the conversion between potential and kinetic energy is essential to all roller coasters. Second, they also consider the role of friction in slowing down cars in roller coasters. Finally, they examine the acceleration of roller coaster cars as they travel around the track. During the associated activity, the students design, build, and analyze a roller coaster for marbles out of foam tubing.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
09/18/2014
Pie-Pan Convection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students observe fluid motion and the formation of convection cells as a solution of soap and water is heated. This procedure can be performed as a demonstration by the teacher, or older students can conduct the experiment themselves. A list of materials, instructions, and a description of the convective process are included.

Subject:
Astronomy
Atmospheric Science
Chemistry
Physical Science
Physics
Material Type:
Interactive
Lecture Notes
Simulation
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
03/10/2005
Pinhole Magnifier
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity related to light and perception, learners use a pinhole in an index card as a magnifying glass to help their eye focus on a nearby object. Learners will also discover that because this magnifier limits the amount of light that reaches their eye from the object, the pinhole makes the object appear dimmer. Learners are encouraged to explore using pins and needles with different diameters to make different-sized holes in index cards to see how this affects the image. They can also try forming a pinhole by curling their index finger.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Plasma Transport Theory, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Description of the processes by which mass, momentum, and energy are transported in plasmas, with special reference to magnetic confinement fusion applications. The Fokker-Planck collision operator and its limiting forms, as well as collisional relaxation and equilibrium, are considered in detail. Special applications include a Lorentz gas, Brownian motion, alpha particles, and runaway electrons. The Braginskii formulation of classical collisional transport in general geometry based on the Fokker-Planck equation is presented. Neoclassical transport in tokamaks, which is sensitive to the details of the magnetic geometry, is considered in the high (Pfirsch-Schluter), low (banana) and intermediate (plateau) regimes of collisionality.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Molvig, Kim
Date Added:
01/01/2003
Polarized Sunglasses
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners explore how polarizing sunglasses can help diminish road glare. By rotating a pair of polarizing sunglass lenses or other polarizing materials, learners will discover that some angles are better at reducing glare than others. Learners observe light from the sky, reflected from a mirror, or reflected from the surface of a pond. Use this activity to introduce learners to principles of light and polarization.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
11/06/2010
Polymer Physics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems."

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Thomas, Edwin (Ned)
Date Added:
01/01/2007
Portable Sundial
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the accuracy of sundials and the discrepancy that lies between "real time" and "clock time." They track the position of the sun during the course of a relatively short period of time as they make a shadow plot, a horizontal sundial, and a diptych sundial. (The activity may be abridged to include only one or two of the different sundials, instead of all three.)

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Preventing Potholes
Rating
0.0 stars

Acting as civil engineers hired by the U.S. Department of Transportation to research how to best use piezoelectric materials to detect road damage, student groups are challenged to independently create their own experiment procedures, working with given materials and tools. The general approach is that they set up model roads using rubber mats to simulate asphalt and piezoelectric transducers to simulate the in-ground road sensors. They drop heavy bolts at various locations on the “road,” collecting data and then analyzing the voltage changes across the piezoelectric transducers caused by the vibrations of the bolt hitting the rubber. After making notches in the rubber “road” to simulate cracks and potholes, they collect more data to see if the piezo elements detect the damage. Students write up their research and conclusions as if presenting evidence to USDOT officials about how the voltage changes across the piezo elements can be used to indicate road damage and extrapolated to determine when roads need maintenance service.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Author:
Amir Alvai
Andrea Varricchione
Drew Kim
Nizar Lajnef
Victoria Davis-King
Adam Alster
Date Added:
08/11/2020
Principles of Optimal Control, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Studies the principles of deterministic optimal control. Variational calculus and Pontryagin's maximum principle. Applications of the theory, including optimal feedback control, time-optimal control, and others. Dynamic programming and numerical search algorithms introduced briefly.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
How, Jonathan
Date Added:
01/01/2008
Principles of Pharmacology, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An introduction to pharmacology. Topics include mechanisms of drug action, dose-response relations, pharmacokinetics, drug delivery systems, drug metabolism, toxicity of pharmacological agents, drug interactions, and substance abuse. Selected agents and classes of agents examined in detail.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Date Added:
01/01/2005
Principles of Radiation Interactions, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explores the interaction of radiation with matter at the microscopic level from both the theoretical and experimental viewpoints. Emphasis on radiation effects in biological systems. Topics include energy deposition by various types of radiation, including the creation and behavior of secondary radiations; the effects of radiation on cells and on DNA; and experimental techniques used to measure these radiation effects. Cavity theory, microdosimetry and methods used to simulate radiation track structure are reviewed. Examples of current literature used to relate theory, modeling, and experimental methods. Requires a term paper and presentation. The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture material.

Subject:
Applied Science
Education
Educational Technology
Environmental Science
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Syllabus
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Coderre, Jeffrey A.
Date Added:
01/01/2004
Projectile Motion
Unrestricted Use
CC BY
Rating
0.0 stars

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Wendy Adams
Date Added:
04/07/2006
Projectile Motion  set initial velocity components
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This simulation is about Projectile Motion set initial velocity components

هذه المحاكاة تتعلق بحركة المقذوفات - وآلية تحديد مكونات السرعه الأولية.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Boston University
Author:
Andrew Duffy
Date Added:
08/10/2020