Updating search results...

Search Resources

991 Results

View
Selected filters:
  • Physical Science
The Amazing Red Planet
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this lesson is to introduce students to the planet Mars. This lesson will begin by discussing the location and size of Mars relative to Earth, as well as introduce many interesting facts about this red planet. Next, the history of Martian exploration is reviewed and students discover why scientists are so interested in studying this mysterious planet. The lesson concludes with students learning about future plans to visit Mars.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Ames Chair
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short pieces of chenille stem arranged inside a box look like a random jumble of line segments—until viewed in the proper perspective.

Note: This activity is detail oriented and time intensive. It’s done by threading a long length of fishing line through twenty small holes, and then attaching short pieces of chenille stem to create a suspended pattern. When you look through a viewing hole, that random-looking pattern resolves into the form of a chair. If you think being a watchmaker is something you’d hate, then you might want to rethink doing this Snack!

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Analytical Chemistry 2.0
Unrestricted Use
CC BY
Rating
0.0 stars

Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Open Textbooks
Author:
David Harvey
Date Added:
10/28/2014
Analytical Chemistry 2.0
Unrestricted Use
CC BY
Rating
0.0 stars

Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Open Textbooks
Author:
David Harvey
Date Added:
10/28/2014
Analytical Techniques for Studying Environmental and Geologic Samples, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, sediments and water.

Subject:
Geology
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bowring, Samuel
Boyle, Edward
Chatterjee, Nilanjan
Dudas, Francis
Date Added:
01/01/2011
The Angle on Pool
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Find out how angles and symmetry come into play in the game of pool in this video adapted from Annenberg Learner’s Learning Math: Measurement.

Subject:
Chemistry
Geometry
Life Science
Mathematics
Physical Science
Material Type:
Lesson
Author:
WGBH Educational Foundation
U.S. Department of Education
Date Added:
08/05/2020
Anti-Gravity Mirror
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this demonstration, amaze learners by performing simple tricks using mirrors. These tricks take advantage of how a mirror can reflect your right side so it appears to be your left side. To make the effect more dramatic, cover the mirror with a cloth, climb onto the table, straddle the mirror, and then drop the cloth as you appear to "take off." This resource contains information about how this trick was applied during the making of the movie "Star Wars."

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Author:
California Department of Education
NEC Foundation of America
National Science Foundation
The Exploratorium
Date Added:
09/04/2019
Anti-Sound Spring
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this simple exploration, a coiled phone cord slows the motion of a wave so you can see how a single pulse travels and what happens when two traveling wave pulses meet in the middle.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
09/04/2019
Antimatter Matters
Read the Fine Print
Educational Use
Rating
0.0 stars

Antimatter, the charge reversed equivalent of matter, has captured the imaginations of science fiction fans for years as a perfectly efficient form of energy. While normal matter consists of atoms with negatively charged electrons orbiting positively charged nuclei, antimatter consists of positively charged positrons orbiting negatively charged anti-nuclei. When antimatter and matter meet, both substances are annihilated, creating massive amounts of energy. Instances in which antimatter is portrayed in science fiction stories (such as Star Trek) are examined, including their purposes (fuel source, weapons, alternate universes) and properties. Students compare and contrast matter and antimatter, learn how antimatter can be used as a form of energy, and consider potential engineering applications for antimatter.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Antioxidant Enzymes: Three or Four Veggies a Day Keeps Aging Away
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this video lesson is to expand the student's knowledge about enzymes by introducing the antioxidant enzymes that are intimately involved in the prevention of cellular damage and eventual slowing of the aging process and prevention of several diseases. Students will learn that natural antioxidant enzymes are manufactured in the body and provide an important defense against free radicals. The topic of free radical action is introduced, covering how they are constantly generated in living cells both by ''accidents of chemistry'' and also by specific metabolic processes.

Subject:
Chemistry
Life Science
Nutrition
Physical Science
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Sawsan F. Karadsheh
Date Added:
02/15/2018
Antioxidant Enzymes: Three or Four Veggies a Day Keeps Aging Away
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this video lesson is to expand the student's knowledge about enzymes by introducing the antioxidant enzymes that are intimately involved in the prevention of cellular damage and eventual slowing of the aging process and prevention of several diseases. Students will learn that natural antioxidant enzymes are manufactured in the body and provide an important defense against free radicals. The topic of free radical action is introduced, covering how they are constantly generated in living cells both by ''accidents of chemistry'' and also by specific metabolic processes.

Subject:
Chemistry
Life Science
Nutrition
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Sawsan F. Karadsheh
Date Added:
04/07/2020
Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Stress tensor, infinitesimal and finite strain, and rotation tensors developed. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation. Solutions to classical problems in geodynamics.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hager, Bradford H.
Date Added:
01/01/2006
Applied Geometric Algebra, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laszlo Tisza was Professor of Physics Emeritus at MIT, where he began teaching in 1941. This online publication is a reproduction the original lecture notes for the course "Applied Geometric Algebra" taught by Professor Tisza in the Spring of 1976. Over the last 100 years, the mathematical tools employed by physicists have expanded considerably, from differential calculus, vector algebra and geometry, to advanced linear algebra, tensors, Hilbert space, spinors, Group theory and many others. These sophisticated tools provide powerful machinery for describing the physical world, however, their physical interpretation is often not intuitive. These course notes represent Prof. Tisza's attempt at bringing conceptual clarity and unity to the application and interpretation of these advanced mathematical tools. In particular, there is an emphasis on the unifying role that Group theory plays in classical, relativistic, and quantum physics. Prof. Tisza revisits many elementary problems with an advanced treatment in order to help develop the geometrical intuition for the algebraic machinery that may carry over to more advanced problems. The lecture notes came to MIT OpenCourseWare by way of Samuel Gasster, '77 (Course 18), who had taken the course and kept a copy of the lecture notes for his own reference. He dedicated dozens of hours of his own time to convert the typewritten notes into LaTeX files and then publication-ready PDFs. You can read about his motivation for wanting to see these notes published in his Preface below. Professor Tisza kindly gave his permission to make these notes available on MIT OpenCourseWare.

Subject:
Algebra
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Tisza, L
Date Added:
01/01/2009
Applied Nuclear Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Yip, Sidney
Date Added:
01/01/2006
Aquatic Chemistry, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Moffett, Jim
Seewald, Jeff
Tivey, Meg
Date Added:
01/01/2005
Archimedes' Principle, Pascal's Law and Bernoulli's Principle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Pascal's law, Archimedes' principle and Bernoulli's principle. Fundamental definitions, equations, practice problems and engineering applications are supplied. A PowerPoint® presentation, practice problems and grading rubric are provided.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Architects and Engineers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.

Subject:
Applied Science
Architecture and Design
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Sara Stemler
Date Added:
09/18/2014
Art in Engineering - Moving Art
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how forces are used in the creation of art. They come to understand that it is not just bridge and airplane designers who are concerned about how forces interact with objects, but artists as well. As "paper engineers," students create their own mobiles and pop-up books, and identify and use the forces (air currents, gravity, hand movement) acting upon them.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Numbers and Operations
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Stephen M. Hou
Date Added:
02/15/2018