Updating search results...

Search Resources

417 Results

View
Selected filters:
  • engineering
Nanotechnology Lesson
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Lesson looking at different uses of nanotechnology. Lesson activity depicted on the PowerPoint. The sunscreen article is higher level; providing differentiation. Nanoscale and web link help students understand the relative size of nanotechnology.

Subject:
Physical Science
Material Type:
Lesson
Author:
Share My Lesson Science Team
Date Added:
06/12/2021
Nanotechnology - Nano Sense (Student's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These NanoSense Student Materials have been designed to help high school students understand science concepts that account for nanoscale phenomena, and the principles, applications, and implications of nanoscale science.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Schank, Patricia
Stanford, Tina
Date Added:
10/09/2009
Nanotechnology - Nano Sense (Teacher's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These NanoSense Teacher Materials been designed to help teachers help high school students understand science concepts that account for nanoscale phenomena, and the principles, applications, and implications of nanoscale science.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Schank, Patricia
Stanford, Tina
Date Added:
10/09/2009
Natural Frequency and Buildings
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about frequency and period, particularly natural frequency using springs. They learn that the natural frequency of a system depends on two things: the stiffness and mass of the system. Students see how the natural frequency of a structure plays a big role in the building surviving an earthquake or high winds.

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jake Moravec
Date Added:
09/18/2014
The Nature of Science
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Objective
Students will be able to explore ideas of what science (and engineering) is and is not and be able to work cooperatively to solve a problem.

Big Idea
As part of developing scientifically literate students, students and their teachers need to be aware of misconceptions about science.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Author:
Mariana Garcia Serrato
Date Added:
06/16/2021
Navigating by the Numbers
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn that math is important in navigation and engineering. Ancient land and sea navigators started with the most basic of navigation equations (Speed x Time = Distance). Today, navigational satellites use equations that take into account the relative effects of space and time. However, even these high-tech wonders cannot be built without pure and simple math concepts basic geometry and trigonometry that have been used for thousands of years. In this lesson, these basic concepts are discussed and illustrated in the associated activities.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Trigonometry
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Penny Axelrad
Date Added:
09/18/2014
Neon Lights & Other Discharge Lamps
Unrestricted Use
CC BY
Rating
0.0 stars

Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/13/2006
Not So Simple
Read the Fine Print
Educational Use
Rating
0.0 stars

Students expand upon their understanding of simple machines with an introduction to compound machines. A compound machine a combination of two or more simple machines can affect work more than its individual components. Engineers who design compound machines aim to benefit society by lessening the amount of work that people exert for even common household tasks. This lesson encourages students to critically think about machine inventions and their role in our lives.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
09/18/2014
Nuclear Systems Design Project, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This capstone course is a group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. It provides opportunities to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Each year, the class takes on a different design project; this year, the project is a power plant design that ties together the creation of emission-free electricity with carbon sequestration and fossil fuel displacement. Students taking graduate version complete additional assignments.This course is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Michael Short
Date Added:
01/01/2011
Numerical Computation for Mechanical Engineers, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB programming.

Subject:
Applied Science
Calculus
Engineering
Information Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Anthony Patera
Daniel Frey
Nicholas Hadjiconstantinou
Date Added:
01/01/2012
Numerical Fluid Mechanics, Spring 2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Pierre Lermusiaux
Date Added:
01/01/2011
Ohm's Law
Unrestricted Use
CC BY
Rating
0.0 stars

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Interactive
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Date Added:
11/16/2007
Ohm's Law 2
Read the Fine Print
Educational Use
Rating
0.0 stars

In this extension to the Ohm's Law I activity, students observe just how much time it takes to use up the "juice" in a battery, and if it is better to use batteries in series or parallel. This extension is suitable as a teacher demonstration and may be started before students begin work on the Ohm's Law I activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ozan Baskan
Date Added:
09/18/2014
Ohm's Law I
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work to increase the intensity of a light bulb by testing batteries in series and parallel circuits. They learn about Ohm's law, power, parallel and series circuits, and ways to measure voltage and current.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ozan Baskan
Date Added:
09/18/2014
Olympic Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson begins by introducing Olympics as the unit theme. The purpose of this lesson is to introduce students to the techniques of engineering problem solving. Specific techniques covered in the lesson include brainstorming and the engineering design process. The importance of thinking out of the box is also stressed to show that while some tasks seem impossible, they can be done. This introduction includes a discussion of the engineering required to build grand, often complex, Olympic event centers.

Subject:
Applied Science
Architecture and Design
Education
Engineering
Geometry
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Tod Sullivan
Date Added:
09/18/2014
On-Track Unit Conversion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use three tracks marked on the floor, one in yards, one in feet and one in inches. As they start and stop a robot specific distances on a "runway," they can easily determine the equivalent measurements in other units by looking at the nearby tracks. With this visual and physical representation of the magnitude of the units of feet, yard and inches, students gain an understanding of what is meant by "unit conversion." They also gain a familiarity with different common units of measurement. They use multiplication and division to verify their physical estimated unit conversions. Students also learn about how common and helpful it is to convert from one unit to another in everyday situations and for engineering purposes. This activity helps students make the abstract concept of unit conversion real so they develop mental models of the magnitude of units instead of applying memorized conversion factors by rote.

Subject:
Applied Science
Education
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
One Plastic Bag Resources - Promoting STEM Through Literature (PSTL)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Isatou Ceesay observed a growing problem in her community where people increasingly disposed of unwanted plastic bags, which accumulated into ugly heaps of trash. She found a way to be the agent of change by recycling the bags and transforming her community. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Use plastic bags to develop a new product (i.e. jump rope).

A document is included in the resources folder that lists the complete standards-alignment for this book activity.

Subject:
Applied Science
Arts and Humanities
English Language Arts
Mathematics
Reading Literature
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
REMC Association of Michigan
Provider Set:
Promoting STEM in Literature
Author:
REMC Association of Michigan
Date Added:
07/12/2020
OpenSciEd - Science Materials Middle School Learning
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

OpenSciEd middle school is NGSS-aligned science curriculum. Designed for all students and teachers, OpenSciEd includes student-facing materials as well as teacher guides. As with most instructional materials, excellent professional learning for teachers should be provided. For more information in Michigan contact the Michigan Mathematics and Science Leadership Network, starrm@mimathandscience.org

Subject:
Life Science
Physical Science
Material Type:
Full Course
Date Added:
03/19/2021
Optical Quantum Control
Unrestricted Use
CC BY
Rating
0.0 stars

Explore an active area of research in optical physics: producing designer pulse shapes to achieve specific purposes, such as breaking apart a molecule. Carefully create the perfect shaped pulse to break apart a molecule by individually manipulating the colors of light that make up a pulse.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Sam McKagan
Date Added:
11/01/2005
Optical Tweezers and Applications
Unrestricted Use
CC BY
Rating
0.0 stars

Did you ever imagine that you can use light to move a microscopic plastic bead? Explore the forces on the bead or slow time to see the interaction with the laser's electric field. Use the optical tweezers to manipulate a single strand of DNA and explore the physics of tiny molecular motors. Can you get the DNA completely straight or stop the molecular motor?

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Chris Malley
Kathy Perkins
Michael Dubson
Thomas Perkins
Wendy Adams
Date Added:
08/01/2007