Watch a reaction proceed over time. How does total energy affect a …
Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.
This course is an introduction to the history, theory, practice, and implications …
This course is an introduction to the history, theory, practice, and implications of rhetoric, the art and craft of persuasion. This course specifically focuses on the ways that scientists use various methods of persuasion in the construction of scientific knowledge.
Students build on their understanding and feel for flow rates, as gained …
Students build on their understanding and feel for flow rates, as gained from the associated Faucet Flow Rate activity, to estimate the flow rate of a local river. The objective is to be able to relate laboratory experiment results to the environment. They use the U.S. Geological Survey website (http://waterdata.usgs.gov/nwis/rt) to determine the actual flow rate data for their river, and compare their estimates to the actual flow rate. For this activity to be successful, choose a nearby river and take a field trip or show a video so students gain a visual feel for the flow of the nearby river.
Students learn various topics associated with the circle through studying a clock. …
Students learn various topics associated with the circle through studying a clock. Topics include reading analog time, understanding the concept of rotation (clockwise vs. counter-clockwise), and identifying right angles and straight angles within circles. Many young students have difficulty telling time in analog format, especially with fewer analog clocks in use (compared to digital clocks). This includes the ability to convert time written in words to a number format, for example, making the connection between "quarter of an hour" to 15 minutes. Students also find it difficult to convert "quarter of an hour" to the number of degrees in a circle. This activity incorporates a LEGO® MINDSTORMS® NXT robot to help students distinguish and visualize the differences in clockwise vs. counter-clockwise rotation and right vs. straight angles, while learning how to tell time on an analog clock. To promote team learning and increase engagement, students work in teams to program and control the robot.
Students learn and practice how to find the perimeter of a polygonal …
Students learn and practice how to find the perimeter of a polygonal shape. Using a ruler, they measure model rooms made of construction paper walls. They learn about other tools, such as a robot, that can help them take measurements. Using a robot built from a LEGO® MINDSTORMS® NXT kit that has been programmed to move along a wall and output the length of that wall, students record measurements and compare the perimeter value found with the robot to the perimeter found using a ruler. In both cases, students sketch maps to the scale of the model room and label the measured lengths. A concluding discussion explores the ways in which using a robot may be advantageous or disadvantageous, and real-world applications.
Students learn about probability through a LEGO® MINDSTORMS® NTX-based activity that simulates …
Students learn about probability through a LEGO® MINDSTORMS® NTX-based activity that simulates a game of "rock-paper-scissors." The LEGO robot mimics the outcome of random game scenarios in order to help students gain a better understanding of events that follow real-life random phenomenon, such as bridge failures, weather forecasts and automobile accidents. Students learn to connect keywords such as certainty, probable, unlikely and impossibility to real-world engineering applications.
Students are presented with a challenge question that they must answer with …
Students are presented with a challenge question that they must answer with scientific and mathematical reasoning. The challenge question is: "You have a large rock on a boat that is floating in a pond. You throw the rock overboard and it sinks to the bottom of the pond. Does the water level in the pond rise, drop or remain the same?" Students observe Archimedes' principle in action in this model recreation of the challenge question when a toy boat is placed in a container of water and a rock is placed on the floating boat. Students use terminology learned in the classroom as well as critical thinking skills to derive equations needed to answer this question.
Students learn about rotary encoders and discover how they operate through hands-on …
Students learn about rotary encoders and discover how they operate through hands-on experimentation. Rotary encoders are applied in tools to determine angle measurements and for translations of angular motion. One common rotary encoder application is in a computer's ball-type mouse—the ball itself is a type of rotary encoder. In this activity, students experiment with two rotary encoders, including one from a computer mouse and one created using a LEGO® MINDSTORMS® NXT kit. They collect data to define and graph the relationship between the motion of the rotary encoder and its output.
Add different salts to water, then watch them dissolve and achieve a …
Add different salts to water, then watch them dissolve and achieve a dynamic equilibrium with solid precipitate. Compare the number of ions in solution for highly soluble NaCl to other slightly soluble salts. Relate the charges on ions to the number of ions in the formula of a salt. Calculate Ksp values.
Students build a saltwater circuit, which is an electrical circuit that uses …
Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.
Students learn how to determine map distances and areas using the map …
Students learn how to determine map distances and areas using the map scale. They get a feel for how much an area represents on the map in relation to the size they are suggesting for their underground caverns to shelter the Alabraska population.
This wiki page documents the activities, articles, links, and resources used, as …
This wiki page documents the activities, articles, links, and resources used, as well as the teacher created Open Educational Resources (OER) during the SLANT Institute.On July 19-23, 2010 San Francisco Unified School District (SFUSD), in collaboration with the California Academy of Sciences, the de Young Museum, 826 Valencia, KQED, ISKME, and the Exploratorium launched the Science, Literacy, Arts iNtegration in the Twenty-first century (SLANT) Summer Institute for Pre-k through 8th Grade Teachers to explore and investigate science and art integration. Participants received resources to use in the classroom and on field trips as they plan lessons with grade level colleagues.
Students use data acquisition equipment to learn about force and displacement in …
Students use data acquisition equipment to learn about force and displacement in regard to simple and complex machines. In the engineering world, materials and systems are tested by applying forces and measuring the resulting displacements. The relationship between the force applied on a material, and its resulting displacement, is a distinct property of the material, which is measured in order to evaluate the material for correct use in structures and machines.
Cryptids, creatures of questionable existence, are used as a source of data …
Cryptids, creatures of questionable existence, are used as a source of data to guide students into the creation of their own GIS data layer in Google Earth. The activity serves the purpose of a tutorial to teach students how to make data layers with a simple subject. Then they use that skill on other topics such as plastics in their neighborhood.
New York City in the 1860s was a mess: crowded, disgusting, filled …
New York City in the 1860s was a mess: crowded, disgusting, filled with garbage. You see, way back in 1860, there were no subways, just cobblestone streets. That is, until Alfred Ely Beach had the idea for a fan-powered train that would travel underground. On February 26, 1870, after fifty-eight days of drilling and painting and plastering, Beach unveiled his masterpiece—and throngs of visitors took turns swooshing down the track. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Think about the way most people in your community travel. Invent a new way of traveling around your community that takes into account the following: helpful to the community, economical to those who use it, convenient for users. What would your new travel system look like? Sketch a new design, and then create a physical prototype of the new design to scale. Keep in mind: Where the system travels, how it is powered, why it is helpful to the community, and any features that make it special.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
This course introduces sensory systems and multi-sensory fusion using the vestibular and …
This course introduces sensory systems and multi-sensory fusion using the vestibular and spatial orientation systems as a model. Topics range from end organ dynamics to neural responses, to sensory integration, to behavior, and adaptation, with particular application to balance, posture and locomotion under normal gravity and space conditions. Depending upon the background and interests of the students, advanced term project topics might include motion sickness, astronaut adaptation, artificial gravity, lunar surface locomotion, vestibulo-cardiovascular responses, vestibular neural prostheses, or other topics of interest.
Students learn how to classify materials as mixtures, elements or compounds and …
Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.
This course covers the fundamentals of signal and system analysis, focusing on …
This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.