Objective Students will be able to observe the inherent patterns and predictable …
Objective Students will be able to observe the inherent patterns and predictable format of the periodic table as they assemble the table element by element.
Big Idea Interact with the periodic table as a puzzle and learn the element's predictable patterns as your students build their puzzle.
Students explore their peripheral vision by reading large letters on index cards. …
Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.
An adaptable writing frame for teacher to comments; self evaluation and an …
An adaptable writing frame for teacher to comments; self evaluation and an indicator of whether the work was independent, shared or teacher assisted etc.
Surveys the distribution, chemical composition, and mineral associations in rocks of the …
Surveys the distribution, chemical composition, and mineral associations in rocks of the earth's crust and upper mantle, and establishes its relation to tectonic environment. Emphasis is on the use of chemistry and physics to interpret rock forming processes. Topics include: dynamics of crust and mantle melting as preserved in the chemical composition of igneous rocks and minerals, the long-term record of global climate change as preserved in the minerals of sedimentary rocks, and the time-temperature-depth record preserved in minerals of metamorphosed crustal rocks.
PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER …
PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER consists of Teacher Editions and student Science Logbooks for every module.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Throughout the module, students study the anchor phenomenon, life at a pond, …
Throughout the module, students study the anchor phenomenon, life at a pond, and build an answer to the Essential Question: How do pond plants and pond animals survive in their environment? As students learn about each new concept, they revisit and refine a model that represents how plants and animals survive in a pond environment. At the end of the module, students use their knowledge of the ways plants and animals survive to explain the anchor phenomenon, and they apply these concepts to a new context in an End-of-Module Assessment. Through these experiences, students develop an enduring understanding that plants and animals have body parts that function in ways that help the plants and animals survive in their environment. Students also develop the understanding that plants and animals of the same kind are recognizable as similar but can vary in many ways and that many animal parents engage in behaviors that help young offspring survive.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Throughout this module, students study the anchor phenomenon, wayang shadow puppetry, and …
Throughout this module, students study the anchor phenomenon, wayang shadow puppetry, and build an answer to the Essential Question: How do puppeteers use light to tell stories during wayang shows? As students learn about each new concept, they revisit and refine a model that shows how light interacts with the parts of a wayang show. At the end of the module, students use their knowledge of light interactions to explain the anchor phenomenon, and they apply these concepts to a new context in an End-of-Module Assessment. Through these experiences, students develop an enduring understanding that the way light interacts with objects affects what people see.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Throughout the module, students study the anchor phenomenon, birds building nests, and …
Throughout the module, students study the anchor phenomenon, birds building nests, and develop an answer to the Essential Question: Why do different kinds of birds use certain materials to build their nests? As students learn about each new concept, they revisit and refine a model that represents how to describe different materials and how birds use those materials to build their nests. At the end of the module, students use their knowledge of how matter can be described, classified, and used to explain the anchor phenomenon, and they apply these concepts to a new context in an End-of-Module Assessment. Through these experiences, students learn that understanding the properties of matter and the ways matter can change helps people use materials for specific purposes.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Throughout the module, students study the anchor phenomenon, the transformation of Surtsey, …
Throughout the module, students study the anchor phenomenon, the transformation of Surtsey, and build an answer to the Essential Question: How can the island of Surtsey change shape over time? As students learn about each new concept, they revisit and refine a model that represents the formation and transformation of Surtsey. At the end of the module, students use their knowledge of how land changes over time to explain the anchor phenomenon, and they apply these concepts to a new context in an End-of Module Assessment. Through these experiences, students develop an enduring understanding that natural events transform Earth’s land as time passes.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Throughout the module, students study the anchor phenomenon, the cliff dwellings at …
Throughout the module, students study the anchor phenomenon, the cliff dwellings at Mesa Verde, and build an answer to the Essential Question: How did the cliff dwellings at Mesa Verde protect people from the weather? As students learn about each new concept, they develop and refine a model that represents a cliff dwelling and use that model to explore how cliff dwellings protected people from the weather. At the end of the module, students use their knowledge of weather to explain the anchor phenomenon, and they apply their learning to a new context in an End-of-Module Assessment. Through these experiences, students begin to establish an enduring understanding of weather and its effects. Specifically, students develop an understanding of the parts of weather, the effects weather has on people and their surroundings, and the ways people prepare for severe weather.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Throughout this module, students study the anchor phenomenon—tugboats moving cargo ships—and build …
Throughout this module, students study the anchor phenomenon—tugboats moving cargo ships—and build an answer to the Essential Question: How do tugboats move cargo ships through a harbor? As students focus on two concepts, they build a model that represents the movement of tugboats and cargo ships through New York Harbor. Students develop an understanding of what makes objects start to move, how pushes and pulls can change the way objects move, and what happens when two objects bump into each other. By the end of the module, students use their knowledge of pushes and pulls to explain the anchor phenomenon, and they apply learned concepts to a new context in an End-of-Module Assessment. As a result of these experiences, students begin to develop an enduring understanding that pushes and pulls can start, stop, and redirect an object’s movement.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
Through this lesson and its associated activity, students explore the role of …
Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.
Objective Students will be able to develop a model that predicts and …
Objective Students will be able to develop a model that predicts and describes changes in particle motion, temperature, and state of a gas when thermal energy is added or removed.
Big Idea Use this lesson to explore how the properties of gases depend on the behavior of the particles involved. Students will love playing with the simulation.
This course discusses phase transitions in Earth's interior. Phase transitions in Earth …
This course discusses phase transitions in Earth's interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth's interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth's interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials.
Objective Students will be able to use interactive visualizations, exploring how light …
Objective Students will be able to use interactive visualizations, exploring how light energy is transformed into chemical energy and stored in glucose during photosynthesis.
Introductory quantum chemistry; particles and waves; wave mechanics; atomic structure and the …
Introductory quantum chemistry; particles and waves; wave mechanics; atomic structure and the Periodic Table; valence and molecular orbital theory; molecular structure; and photochemistry.
This course is an introduction to quantum mechanics for use by chemists. …
This course is an introduction to quantum mechanics for use by chemists. Topics include particles and waves, wave mechanics, semi-classical quantum mechanics, matrix mechanics, perturbation theory, molecular orbital theory, molecular structure, molecular spectroscopy, and photochemistry. Emphasis is on creating and building confidence in the use of intuitive pictures.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.