Student teams are challenged to evaluate the design of several liquid soaps …
Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.
Description: Build a model of the Earth, with its spin-axis, and a …
Description:
Build a model of the Earth, with its spin-axis, and a lamp as the Sun to demonstrate the concept of seasons.
Goals
--Understanding why we have seasons and the cause of seasonal variation in temperature. --Learning about how the Earth rotates on a tilted axis compared to its orbit around the Sun.
Learning Objectives
--Students learn about seasons by building a model of the Earth and the Sun, and investigating how sunlight hits the Northern and Southern Hemispheres during different seasons. --Students explain that the same amount of light hitting the ground heats up a small area more than a large area --Students show that the angle at which the sunlight hits the Earth influences how much the sunlight heats up the Earth. Students demonstrate that the angle at which the sunlight hits the Earth is related to the tilt of the Earth’s rotational axis compared to the Earth’s orbit around the Sun.
Students apply everything they have learned about light properties and laser technologies …
Students apply everything they have learned about light properties and laser technologies to designing, constructing and presenting laser-based security systems that protect the school's mummified troll. In the associated activity, students "test their mettle" by constructing their security system using a PVC pipe frame, lasers and mirrors. In the lesson, students "go public" by creating informational presentations that explain their systems, and serve as embedded assessment, testing each student's understanding of light properties.
Survey of the important aspects of modern sediments and ancient sedimentary rocks. …
Survey of the important aspects of modern sediments and ancient sedimentary rocks. Emphasis is on fundamental materials, features, and processes. Textures of siliciclastic sediments and sedimentary rocks: particle size, particle shape, and particle packing. Mechanics of sediment transport. Survey of siliciclastic sedimentary rocks: sandstones, conglomerates, and shales. Carbonate sediments and sedimentary rocks; cherts; evaporites. Siliciclastic and carbonate diagenesis. Paleontology, with special reference to fossils in sedimentary rocks. Modern and ancient depositional environments. Stratigraphy. Sedimentary basins. Fossil fuels: coal, petroleum.
Explore your own straight-line motion using a motion sensor to generate distance …
Explore your own straight-line motion using a motion sensor to generate distance versus time graphs of your own motion. Learn how changes in speed and direction affect the graph, and gain an understanding of how motion can be represented on a graph.
In this quick optics activity, learners use a dim point of light …
In this quick optics activity, learners use a dim point of light (a disassembled Mini MagLite and dowel set-up) to cast a shadow of the blood supply in their retina onto the retina itself. This allows learners to see the blood supply of their retina and even their blind spot. Learners are encouraged to wear eye protection.
This course is an introduction to branes in string theory and their …
This course is an introduction to branes in string theory and their world volume dynamics. Instead of looking at the theory from the point of view of the world-sheet observer, we will approach the problem from the point of view of an observer which lives on a brane. Instead of writing down conformal field theory on the worldsheet and studying the properties of these theories, we will look at various branes in string theory and ask how the physics on their world-volume looks like.
Lectures and discussion introducing the range of topics relevant to plasma physics …
Lectures and discussion introducing the range of topics relevant to plasma physics and fusion engineering. Introductory discussion of the economic and ecological motivation for the development of fusion power. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Tour of Plasma Science and Fusion Center experimental facilities.
Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental …
Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental Science track, this course is an introduction to current research in the field. Stresses integration of central scientific concepts in environmental policy making and the chemistry, biology, and geology environmental science tracks. Revisits selected core themes for students who have already acquired a basic understanding of environmental science concepts. The topic for this term is geoengineering.
The main objective of this cross disciplinary course is to understand the …
The main objective of this cross disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.
"This course provides an introduction to important philosophical questions about the mind, …
"This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate, or are they acquired by experience? (And what does it even mean to call a concept 'innate'?) Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course will include guest lectures by Professors."
Students learn how to classify materials as mixtures, elements or compounds and …
Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.
SPARK follows Scott Snibbe at work on an installation piece Blow Up …
SPARK follows Scott Snibbe at work on an installation piece Blow Up at the Yerba Buena Center for the Arts in San Francisco, and through his studio as he discusses his installation, interactive, and net art projects and some of the ideas underlying them. This Educator Guide is about the digital and new media art and the historic interplay between art and science and technology.
This course covers the fundamentals of signal and system analysis, focusing on …
This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.
Students build and use a very basic Coulter electric sensing zone particle …
Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.
Students apply the mechanical advantages and problem-solving capabilities of six types of …
Students apply the mechanical advantages and problem-solving capabilities of six types of simple machines (wedge, wheel and axle, lever, inclined plane, screw, pulley) as they discuss modern structures in the spirit of the engineers and builders of the great pyramids. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
" This course is a client-based land analysis and site planning project. …
" This course is a client-based land analysis and site planning project. The primary focus of the course changes from year to year. This year the focus is on Japan's New Towns. Students will review land inventory, analysis, and planning of sites and the infrastructure systems that serve them.ĺĘThey willĺĘalso examine spatial organization of uses, parcelization, design of roadways, grading, utility systems, stormwater runoff, parking, traffic and off-site impacts, as well as landscaping. LecturesĺĘwill coverĺĘanalytical techniques and examples of good site-planning practice. Requirements include a series of Assignments and Labs and a client-based project."
" The goal of this course is to illustrate the spectroscopy of …
" The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy."
This web-based graphing activity explores the similarities and differences between Velocity vs. …
This web-based graphing activity explores the similarities and differences between Velocity vs. Time and Position vs. Time graphs. It interactively accepts user inputs in creating "prediction graphs", then provides real-time animations of the process being analyzed. Learners will annotate graphs to explain changes in motion, respond to question sets, and analyze why the two types of graphs appear as they do. It is appropriate for secondary physical science courses, and may also be used for remediation in preparatory high school physics courses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. Users must register to access full functionality of all the tools available with SmartGraphs.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.