Updating search results...

Search Resources

417 Results

View
Selected filters:
  • engineering
Eureka! Or Buoyancy and Archimedes' Principle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore material properties in hands-on and visually evident ways via the Archimedes' principle. First, they design and conduct an experiment to calculate densities of various materials and present their findings to the class. Using this information, they identify an unknown material based on its density. Then, groups explore buoyant forces. They measure displacement needed for various materials to float on water and construct the equation for buoyancy. Using this equation, they calculate the numerical solution for a boat hull using given design parameters.

Subject:
Applied Science
Architecture and Design
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andy Wekin
Date Added:
09/18/2014
Evolution of Digital Organisms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of digital organisms and digital evolution. They learn about the research that digital evolution software makes possible, and compare and contrast it with biological evolution.

Subject:
Applied Science
Computer Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Louise Mead
Robert Pennock
Wendy Johnson
Date Added:
09/18/2014
Exploration Comes to Life with Orienteering, Geocaching
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article provides an overview of orienteering and geocaching as well as suggestions for incorporating these activities into elementary classrooms

Subject:
Education
Material Type:
Lesson Plan
Author:
Jessica Fries-Gaither
Date Added:
07/22/2020
Exploring Bone Mineral Density
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will explore two given websites to gather information on Bone Mineral Density and how it is measured. They will also learn about X-rays in general, how they work and their different uses, along with other imaging modalities. They will answer guiding questions as they explore the websites and take a short quiz after to test the knowledge they gained while reading the articles.

Subject:
Applied Science
Engineering
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristyn Shaffer
Date Added:
09/18/2014
Faraday's Electromagnetic Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
10/22/2006
Faucet Flow Rate
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct experiments to determine the flow rate of faucets by timing how long it takes to fill gallon jugs. They do this for three different faucet flow levels (quarter blast, half blast, full blast), averaging three trials for each level. They convert their results from gallons per second (gps) to cubic feet per second (cfs).

Subject:
Applied Science
Education
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bobby Rinehart
Karen Johnson
Mike Mooney
Date Added:
09/18/2014
Feedback Control Systems, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will teach fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, you should be able to design controllers using state-space methods and evaluate whether these controllers are robust to some types of modeling errors and nonlinearities. You will learn to: Design controllers using state-space methods and analyze using classical tools. Understand impact of implementation issues (nonlinearity, delay). Indicate the robustness of your control design. Linearize a nonlinear system, and analyze stability.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Frazzoli, Emilio
How, Jonathan P.
Date Added:
01/01/2011
Feel Better Faster: All about Flow Rate
Read the Fine Print
Educational Use
Rating
0.0 stars

All of us have felt sick at some point in our lives. Many times, we find ourselves asking, "What is the quickest way that I can start to feel better?" During this two-lesson unit, students study that question and determine which form of medicine delivery (pill, liquid, injection/shot) offers the fastest relief. This challenge question serves as a real-world context for learning all about flow rates. Students study how long various prescription methods take to introduce chemicals into our blood streams, as well as use flow rate to determine how increasing a person's heart rate can theoretically make medicines work more quickly. Students are introduced to engineering devices that simulate what occurs during the distribution of antibiotic cells in the body.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
Feel the Stress
Read the Fine Print
Educational Use
Rating
0.0 stars

Working individually or in groups, students explore the concept of stress (compression) through physical experience and math. They discover why it hurts more to poke themselves with mechanical pencil lead than with an eraser. Then they prove why this is so by using the basic equation for stress and applying the concepts to real engineering problems.

Subject:
Applied Science
Engineering
Geometry
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeffrey Mitchell
Date Added:
09/18/2014
The Fibonacci Sequence & Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

Using the LEGO® NXT robotics kit, students construct and program robots to illustrate and explore the Fibonacci sequence. Within teams, students are assigned roles: group leader, chassis builder, arm builder, chief programmer, and Fibonacci verifier. By designing a robot that moves based on the Fibonacci sequence of numbers, they can better visualize how quickly the numbers in the sequence grow. To program the robot to move according to these numbers, students break down the sequence into simple algebraic equations so that the computer can understand the Fibonacci sequence.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alexander Kozak
Nicole Abaid
Russell Holstein
Vikram Kapila
Date Added:
09/18/2014
Finding Food in the Amazon
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, the students will investigate a variety of plants and animals common to the Amazon through research. They will determine the plant or animal characteristics that make them edible or useful for the trip and learn to categorize them by comparing similarities and/or differences.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Finite Element Analysis of Solids and Fluids II, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bathe, Klaus-JĺŮrgen
Date Added:
01/01/2011
Float-a-Boat: Introduction to Scientific Inquiry and Design (Part 2/2)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Objective
SWBAT plan and carry out an investigation using science and engineering practices.

Big Idea
Welcome to the water park! Students will create a “lazy river” boat from aluminum foil that will hold the most passengers.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Lesson Plan
Author:
Erin Greenwood
Date Added:
06/16/2021
Floating and Falling Flows
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover fluid dynamics related to buoyancy through experimentation and optional photography. Using one set of fluids, they make light fluids rise through denser fluids. Using another set, they make dense fluids sink through a lighter fluid. In both cases, they see and record beautiful fluid motion. Activities are also suitable as class demonstrations. The natural beauty of fluid flow opens the door to seeing the beauty of physics in general.

Subject:
Applied Science
Arts and Humanities
Education
Engineering
Physical Science
Physics
Visual Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cody Taylor
Denise Carlson
Gala Camacho
Jean Hertzberg
Malinda Schaefer Zarske
Date Added:
09/18/2014
Flocculants: The First Step to Cleaner Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience firsthand one of the most common water treatment types in the industry today, flocculants. They learn how the amount of suspended solids in water is measured using the basic properties of matter and light. In addition, they learn about the types of solids that can be found in water and the reasons that some are easier to remove than others. Encompassing the concepts of force and motion, attraction and repulsion of charged particles, and properties of matter, during the associated activity students see scientific concepts they already understand through the eyes of engineers who apply them to the removal of solids from water via chemical flocculants.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Audrey Buttice
Date Added:
09/18/2014
Flow Charting App Inventor Tutorials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and create flow charts for the MIT App Inventor tutorials in this computer science activity about program analysis. In program analysis, which is based on determining the behavior of computer programs, flow charts are an important tool for tracing control flow. Control flow is a graphical representation of the logic present in a program and how the program works. Students work through tutorials, design and create flow charts about how the tutorials function, and present their findings to the class. In their final assessment, they create an additional flow chart for an advanced App Inventor tutorial. This activity prepares students with the knowledge and skills to use App Inventor in the future to design and create Android applications.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Flow Rates of Faucets and Rivers
Read the Fine Print
Educational Use
Rating
0.0 stars

In the Flow Rate Experiment, students perform hands-on experiments with a common faucet, as well as work with the Engineering Our Water Living Lab to gain a better understanding of flow rate and how it pertains to engineering and applied science. Students calculate the flow rate of a faucet for three different levels (quarter blast, half blast, and full blast). Building on these calculations, students hypothesize about the flow rate in a nearby river, and then use the Engineering Our Water Living Lab to check their hypothesis. For this lesson to be effective, your students need to have a visual feel for the flow in a nearby river.

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Forestry and Agriculture
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bobby Rinehart
Karen Johnson
Mike Mooney
Date Added:
09/18/2014