Updating search results...

Search Resources

417 Results

View
Selected filters:
  • engineering
Simple Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Simple Machines and Modern Day Engineering Analogies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply the mechanical advantages and problem-solving capabilities of six types of simple machines (wedge, wheel and axle, lever, inclined plane, screw, pulley) as they discuss modern structures in the spirit of the engineers and builders of the great pyramids. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brett S. Ellison
Denise Carlson
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Skeletal System Overview
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will learn about bone structure, bone development and growth, and bone functions. Later, students will apply this understanding to answer the Challenge Question presented in the "Fix the Hip" lesson and use the acquired learning to construct an informative brochure about osteoporosis and biomedical engineering contributions to this field.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Morgan Evans
Date Added:
09/18/2014
Smart Move!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students become familiar with the concept of a communication system, its various parts and functions. To do this, they encode, decode, transmit, receive and store messages for a hypothetical rescue mission, using a code sheet and flashlight for this process.They also maintain storage sheets from which they can retrieve information as it is required.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ozan Baskan
Date Added:
09/18/2014
Solenoids
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson discusses solenoids. Students learn how to calculate the magnetic field along the axis of a solenoid and complete an activity exploring the magnetic field of a metal slinky. Solenoids form the basis for the magnet of an MRI. Exploring the properties of this solenoid helps students understand the MRI machine.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Solving Interactive Problems With Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students work to solve an interactive Rube Goldberg project using strategic trial and error processes. They begin at level one and increase levels as they become successful on the free website engineering.com

Subject:
Education
Educational Technology
Material Type:
Activity/Lab
Game
Interactive
Module
Provider:
REMC Association of Michigan
Provider Set:
MiTechKids
Author:
REMC Association of Michigan
Date Added:
09/25/2023
Solving with Seesaws
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a simple seesaw to visualize solving a two- or three-step mathematics equation, while solving a basic structural engineering weight balance problem in the process. They solve two-step equations on a worksheet and attempt to solve the challenge of "balancing a beam" through hands-on problems. The use of sensor equipment for correct position monitoring aids students in balancing the structure, as well as balancing the equation as they solve it on paper.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Date Added:
09/18/2014
Sound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the connections between the science of sound waves and engineering design for sound environments. Through three lessons, students come to better understand sound waves, including how they change with distance, travel through different mediums, and are enhanced or mitigated in designed sound environments. They are introduced to audio engineers who use their expert scientific knowledge to manipulate sound for music and film production. They see how the invention of the telephone pioneered communications engineering, leading to today's long-range communication industry and its worldwide impact. Students analyze materials for sound properties suitable for acoustic design, learning about the varied environments created by acoustical engineers. Hands-on activities include modeling the placement of microphones to create a specific musical image, modeling and analyzing a string telephone, and applyling what they've learned about sound waves and materials to model a controlled sound room.

Subject:
Applied Science
Career and Technical Education
Education
Engineering
Film and Music Production
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Sound Extenders
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to communications engineers as people who enable long-range communication. In the lesson demonstration, students discuss the tendency of sound to diminish with distance and model this phenomenon using a slinky. Finally, Alexander Graham Bell is introduced as the inventor of the telephone and a pioneer in communications engineering.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
09/18/2014
Space
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit begins by introducing students to the historical motivation for space exploration. They learn about the International Space Station, including current and futuristic ideas that engineers are designing to propel space research. Then they learn about the physical properties of the Moon, and think about what types of products engineers would need to design in order for humans to live on the Moon. Lastly, students learn some descriptive facts about asteroids, such as their sizes and how that relates to the potential danger of an asteroid colliding with the Earth.

Subject:
Applied Science
Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the historical motivation for space exploration. They learn about the International Space Station as an example of recent space travel innovation and are introduced to new and futuristic ideas that space engineers are currently working on to propel space research far into the future!

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Geoffrey Hill
Jane Evenson
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
09/18/2014
Special Studies in Urban Studies and Planning - The Cardener River Corridor Workshop, Fall 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This landscape and environmental planning workshop investigates and propose a framework for the enhancement, development and preservation of the natural and cultural landscape of the Cardener River Corridor in Catalunya Spain. The workshop is carried out in conjunction with the Polytechnic University of Catalunya, and the Barcelona Provincial Council (DiputaciĚ_ de Barcelona).

Subject:
Applied Science
Architecture and Design
Ecology
Engineering
Environmental Science
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ben-Joseph
Ben-Joseph, Eran
Eran
Date Added:
01/01/2001
Splish, Splash, I was Takin' a Bath!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will explore the causes of water pollution and its effects on the environment through the use of models and scientific investigation. In the accompanying activities, they will investigate filtration and aeration processes as they are used for removing pollutants from water. Lastly, they will learn about the role of engineers in water treatment systems.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Spring Away!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab demonstrates Hooke's Law with the use of springs and masses. Students attempt to determine the proportionality constant, or k-value, for a spring. They do this by calculating the change in length of the spring as different masses are added to it. The concept of a spring's elastic limit is also introduced, and the students test to makes sure the spring's elastic limit has not been reached during their lab tests. After compiling their data, they attempt to find an average value of the spring's k-value by measuring the slopes between each of their data points. Then they apply what they've learned about springs to how engineers might use that knowledge in the design of a toy that enables kids to jump 2-3 feet in the air.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey Mckelvey
Date Added:
09/18/2014
Stanford NGSS Integrated Curriculum: An Exploration of a Multidimensional World
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Integrated, NGSS-designed, project-based curriculum for 6th, 7th, and 8th grades.

Funded by S. D. Bechtel Jr. Foundation and SilverGiving Foundation, this 6th, 7th, and 8th grade curriculum aligns to the California Integrated model in which earth and space science, life science, physical science and/or engineering are integrated within each curriculum unit.

All the units:
are project-based
include Instructionally embedded assessments align to the 5E instructional model (i.e., engage, explore, explain, elaborate, evaluate)
are phenomena-based
provide students with opportunities to generate their own questions to motivate sense-making and/or problem solving
incorporate language development strategies
provide an additional pop-out lesson that allows students to apply what they've learned to delve deeper into the intersection of social justice, science, and the "greater good" (see "Pop-Outs" tabs)

In addition to our four instructional units, there is a unit devoted to groupwork to help teachers establish classroom norms and expectations around effective collaborative work.

Subject:
Life Science
Physical Science
Material Type:
Activity/Lab
Assessment
Data Set
Full Course
Homework/Assignment
Reading
Date Added:
02/16/2022
Start Networking!
Read the Fine Print
Educational Use
Rating
0.0 stars

To get a better understanding of complex networks, students create their own, real social network example by interacting with their peers in the classroom and documenting the interactions. They represent the interaction data as a graph, calculate two mathematical quantities associated with the graph—the degree of each node and the degree distribution of the graph—and analyze how these quantities can be used to infer properties of the social network at hand.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Debbie Jenkinson
Garrett Jenkinson
John Goutsias
Susan Frennesson
Date Added:
09/18/2014
States of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
States of Matter Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Heat, cool and compress atoms and molecules and watch as they change between solid, liquid and gas phases.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
11/14/2011
Storing Android Accelerometer Data: App Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work through an online tutorial on MIT's App Inventor to learn how to create Android applications. Using those skills, they create their own applications and use them to collect data from an Android device accelerometer and store that data to databases. NOTE: Teachers and students must have a working knowledge of basic programming and App Inventor to complete this lesson. This lesson is not an introduction to MIT's App Inventor and is not recommended for use without prior knowledge of App Inventor to produce an end product. This lesson is an application for App Inventor that allows for the storage of persistent data (data that remains in memory even if an app is closed). This required prior knowledge can come from other experiences with the App Inventor. Also, many additional resources are available, such as tutorials from MIT. This lesson could also be used as an enrichment project for students who are self-motivated to learn the App Inventor software.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Straining out the Dirt
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students build a water filter with activated carbon, cotton and other materials to remove chocolate powder from water.

Subject:
Applied Science
Ecology
Engineering
Environmental Science
Forestry and Agriculture
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer
Matt Lundberg
Sharon D. Pérez-Suárez
Date Added:
09/18/2014