Students learn about gear ratios and power by operating toy mechanical cranes …
Students learn about gear ratios and power by operating toy mechanical cranes of differing gear ratios. They attempt to pick up objects with various masses to witness how much power must be applied to the system to oppose the force of gravity. They learn about the concept of gear ratio and practice calculating gear ratios on worksheets, discovering that smaller gear ratios are best for picking objects up quickly, and larger gear ratios make it easier to lift heavy objects.
Two blobs of clay go on an enjoyable adventure as they transform …
Two blobs of clay go on an enjoyable adventure as they transform themselves into fun shapes and new things throughout their escapade. What will they be by the end of the book? The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Design a stop-motion video that morphs an item of your choice into another item. Before you begin, sketch out the process you’ll take to transform your item.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
Students are challenged to design a method for separating steel from aluminum …
Students are challenged to design a method for separating steel from aluminum based on magnetic properties as is frequently done in recycling operations. To complicate the challenge, the magnet used to separate the steel must be able to be switched off to allow for the recollection of the steel. Students must ultimately design, test, and present an effective electromagnet.
In this lesson, students continue their education on cells in the human …
In this lesson, students continue their education on cells in the human body. They discuss stem cells and how engineers are involved in the research of stem cell behavior. They learn about possible applications of stem cell research and associated technologies, such as fluorescent dyes for tracking the replication of specific cells.
Students explore the definition of a function by playing an interactive game …
Students explore the definition of a function by playing an interactive game called "Club Function." The goal of the game is to be in the club! With students each assigned to be either a zebra or a rhinoceros, they group themselves according to the "rules" of the club function. After two minutes, students freeze in their groups, and if they are not correctly following the rules of the club function, then they are not allowed into the "club." Through this activity students come to understand that one x-coordinate can only have one corresponding y-coordinate while y-coordinates can have many x-coordinates that correspond to it.
This is a class about applying autonomy to real-world systems. The overarching …
This is a class about applying autonomy to real-world systems. The overarching theme uniting the many different topics in this course will center around programming a cognitive robotic. This class takes the approach of introducing new reasoning techniques and ideas incrementally. We start with the current paradigm of programming you're likely familiar with, and evolve it over the semester—continually adding in new features and reasoning capabilities—ending with a robust, intelligent system. These techniques and topics will include algorithms for allowing a robot to: Monitor itself for potential problems (both observable and hidden), scheduling tasks in time, coming up with novel plans to achieve desired goals over time, dealing with the continuous world, collaborating with other (autonomous) agents, dealing with risk, and more.
Make a whole rainbow by mixing red, green, and blue light. Change …
Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white light. View the light as a solid beam, or see the individual photons.
Students continue an examination of logarithms in the Research and Revise stage …
Students continue an examination of logarithms in the Research and Revise stage by studying two types of logarithms—common logarithms and natural logarithm. In this study, they take notes about the two special types of logarithms, why they are useful, and how to convert to these forms by using the change of base formula. Then students see how these types of logarithms can be applied to solve exponential equations. They compute a set of practice problems and apply the skills learned in class.
Students examine different types of fabric and their characteristics. Using magnifying glasses …
Students examine different types of fabric and their characteristics. Using magnifying glasses and sandpaper, they test and observe the weave and wear quality of fabric samples. By comparing the qualities of different fabrics they come to understand why so many different types of fabric exist and are able to recognize or suggest different uses for them.
In small groups, students experiment and observe the similarities and differences between …
In small groups, students experiment and observe the similarities and differences between human-made objects and objects from nature. They compare the function and structure of hollow bones with drinking straws, bird beaks, tool pliers, bat wings and airplane wings. Observations are recorded in a compare & contrast chart, and then shared in a classroom discussion, along with follow up assessment activities such as journal writing and Venn diagrams.
Students learn about complex networks and how to represent them using graphs. …
Students learn about complex networks and how to represent them using graphs. They also learn that graph theory is a useful mathematical tool for studying complex networks in diverse applications of science and engineering, such as neural networks in the brain, biochemical reaction networks in cells, communication networks, such as the internet, and social networks. Topics covered include set theory, defining a graph, as well as defining the degree of a node and the degree distribution of a graph.
Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct …
Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct and plastics don't, and why some materials conduct only when you shine a flashlight on them.
The objective of this subject is to understand the nature of manufacturing …
The objective of this subject is to understand the nature of manufacturing process variation and the methods for its control. First, a general process model for control is developed to understand the limitations a specific process places on the type of control used. A general model for process variation is presented and three methods are developed to minimize variations: Statistical Process Control, Process Optimization and in-process Feedback Control. These are considered in a hierarchy of cost-performance tradeoffs, where performance is based on changes in process capability.
This course will focus on fundamental subjects in convexity, duality, and convex …
This course will focus on fundamental subjects in convexity, duality, and convex optimization algorithms. The aim is to develop the core analytical and algorithmic issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood.
A brief refresher on the Cartesian plane includes how points are written …
A brief refresher on the Cartesian plane includes how points are written in (x, y) format and oriented to the axes, and which directions are positive and negative. Then students learn about what it means for a relation to be a function and how to determine domain and range of a set of data points.
In this lesson, students find their location on a map using Latitude …
In this lesson, students find their location on a map using Latitude and Longitudinal coordinates. They determine where they should go to be rescued and how best to get there.
It’s easy to take today’s ubiquitous colored crayons for granted, but they …
It’s easy to take today’s ubiquitous colored crayons for granted, but they were the result of one individual’s innovation. Biebow introduces Edwin Binney—a mustachioed man and head of a carbon black factory—who wished to make color-pigmented wax crayons that reflected the world outside. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Think about the school/community/world in which you live and identify a problem that could be solved with a new invention.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
The subject of this course is the historical process by which the …
The subject of this course is the historical process by which the meaning of "technology" has been constructed. Although the word itself is traceable to the ancient Greek root teckhne (meaning art), it did not enter the English language until the 17th century, and did not acquire its current meaning until after World War I. The aim of the course, then, is to explore various sectors of industrializing 19th and 20th century Western society and culture with a view to explaining and assessing the emergence of technology as a pivotal word (and concept) in contemporary (especially Anglo-American) thought and expression.
Students gain experience with the software/system design process, closely related to the …
Students gain experience with the software/system design process, closely related to the engineering design process, to solve a problem. First, they learn about the Mars Curiosity rover and its mission, including the difficulties that engineers must consider and overcome to operate a rover remotely. Students observe a simulation of a robot being controlled remotely. These experiences guide discussion on how the design process is applied in these scenarios. The lesson culminates in a hands-on experience with the design process as students simulate the remote control of a rover. In the associated activity, students gain further experience with the design process by creating an Android application using App Inventor to control one aspect of a remotely controlled vehicle. (Note: The lesson requires a LEGO® MINDSTORMS® Education NXT base set.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.