In "Is Peanut Butter Made From Nuts or Legumes?" students discover how …
In "Is Peanut Butter Made From Nuts or Legumes?" students discover how peanut butter is made from start to finish while answering the question: nut or legume.
The subject of this course is the historical process by which the …
The subject of this course is the historical process by which the meaning of "technology" has been constructed. Although the word itself is traceable to the ancient Greek root teckhne (meaning art), it did not enter the English language until the 17th century, and did not acquire its current meaning until after World War I. The aim of the course, then, is to explore various sectors of industrializing 19th and 20th century Western society and culture with a view to explaining and assessing the emergence of technology as a pivotal word (and concept) in contemporary (especially Anglo-American) thought and expression.
This course provides students with an opportunity to conceive, design and implement …
This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.
Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover …
Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.
This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
Addresses some of the important issues involved with the planning, development, and …
Addresses some of the important issues involved with the planning, development, and implementation of lean enterprises. People, technology, process, and management dimensions of an effective lean manufacturing company are considered in a unified framework. Particular emphasis on the integration of these dimensions across the entire enterprise, including product development, production, and the extended supply chain. Analysis tools as well as future trends and directions are explored. A key component of this subject is a team project.
This course is an introduction to the consideration of technology as the …
This course is an introduction to the consideration of technology as the outcome of particular technical, historical, cultural, and political efforts, especially in the United States during the 19th and 20th centuries. Topics include industrialization of production and consumption, development of engineering professions, the emergence of management and its role in shaping technological forms, the technological construction of gender roles, and the relationship between humans and machines.
Introduces the student to the changing era of machining technology, emphasizing terminology, …
Introduces the student to the changing era of machining technology, emphasizing terminology, referencing and applications related to manufacturing environments. The fundamental use of bench tools, layout procedures, materials, precision measuring tools, machining processes, drilling and cut-off machines and other machining/manufacturing processes will be stressed. Skill competencies and standards will be identified.Students will perform basic lathe operations, which will consist of facing, center-drilling, chuck turning, turning between centers, boring, grooving, tapers, knurling, and single point threading.Teaches students to identify the major parts of the vertical mill, align a vise, use an indicator, edge finder, and boring head, determine speeds and feeds perform simple indexing, mill flat, square surfaces and slots, drill, bore, and tap holes.Covers computer numerical control (CNC) lathe and mill operations, control functions, the letter address system, the program format, and machine setup. G & M codes, control functions, the letter address system, and math issues related to CNC are included.
Metals 1 and 2 CORE provides students with an understanding of manufacturing …
Metals 1 and 2 CORE provides students with an understanding of manufacturing processes and systems common to careers in machine tool and materials forming industries. Topics include the interpretation and layout of machined and formed-part prints; the cutting, shaping, fastening, and finishing of machine tools; and casting, forging, molding, cold forming, and shearing processes.
This collection uses primary sources to explore the Bracero Program. Digital Public …
This collection uses primary sources to explore the Bracero Program. Digital Public Library of America Primary Source Sets are designed to help students develop their critical thinking skills and draw diverse material from libraries, archives, and museums across the United States. Each set includes an overview, ten to fifteen primary sources, links to related resources, and a teaching guide. These sets were created and reviewed by the teachers on the DPLA's Education Advisory Committee.
Multi-scale systems differ from traditional macro-scale systems in that the multi-scale systems …
Multi-scale systems differ from traditional macro-scale systems in that the multi-scale systems use components from two or more scales (i.e. nano, micro, meso, and macro-scales). Subject provides the skills required to design and manufacture multi-scale systems. Emphasis is placed on understanding the fundamental differences between traditional macro-scale system design and the design of multi-scale systems. Topics include design methodologies, modeling approaches, analytic tools, and manufacturing processes. Examples drawn from a diverse range of applications, including automobiles, fiber optic equipment, electronic test equipment, and micro/meso-scale machinery. Students master the materials through problem sets and a substantial term project.
Operations Strategy provides a unifying framework for analyzing strategic issues in manufacturing …
Operations Strategy provides a unifying framework for analyzing strategic issues in manufacturing and service operations. Students analyze the relationships between manufacturing and service companies and their suppliers, customers, and competitors. The course covers strategic decisions in technology, facilities, vertical integration, human resources, and other areas, and also explores means of competition such as cost, quality, and innovativeness.
Introduces students to the theory, algorithms, and applications of optimization. The optimization …
Introduces students to the theory, algorithms, and applications of optimization. The optimization methodologies include linear programming, network optimization, dynamic programming, integer programming, non-linear programming, and heuristics. Applications to logistics, manufacturing, transportation, E-commerce, project management, and finance.
In the past building prototypes of electronic components for new projects/products was …
In the past building prototypes of electronic components for new projects/products was limited to using protoboards and wirewrap. Manufacturing a printed-circuit-board was limited to final production, where mistakes in the implementation meant physically cutting traces on the board and adding wire jumpers - the final products would have these fixes on them! Today that is no longer the case, while you will still cut traces and use jumpers when debugging a board, manufacturing a new final version without the errors is a simple and relatively inexpensive task. For that matter, manufacturing a prototype printed circuit board which you know is likely to have errors but which will get the design substantially closer to the final product than a protoboard setup is not only possible, but desirable. In this class, you'll learn to design, build, and debug printed-circuit-boards.
This class deals with the modeling and analysis of queueing systems, with …
This class deals with the modeling and analysis of queueing systems, with applications in communications, manufacturing, computers, call centers, service industries and transportation. Topics include birth-death processes and simple Markovian queues, networks of queues and product form networks, single and multi-server queues, multi-class queueing networks, fluid models, adversarial queueing networks, heavy-traffic theory and diffusion approximations. The course will cover state of the art results which lead to research opportunities.
Week 6, Day 1---Day 2 What Is It Made Of? Noticing Types …
Week 6, Day 1---Day 2 What Is It Made Of? Noticing Types of Materials by Martha E. H. Rustad, illustrated by Christine M. Schneider Introduce Book and Preview Technical Vocabulary Teach Text Structure Diagram: What is it made of? Describing objects, Categorizing objects, Finding Patterns Model a Comprehension Strategy and Ask Questions During Reading Engage Students in Discussion Chart: Description of objects Update Text Structure Anchor Chart Teach Sentence Composing Assign or Model Written Response Review and Share Written Responses *Planning Notes Having about 10 physical props (5 for the discussion and 5 for the written response) available would enrich the lesson and engage the children. Find items to fit some of the different categories on page 13.
Introduction to axiomatic design. Theoretical basis for rational design. One-FR Design. Multi-FR …
Introduction to axiomatic design. Theoretical basis for rational design. One-FR Design. Multi-FR design. System design. Software design. Product design. Materials and materials process design. Manufacturing system design. Complexities in design: time-independent real complexity, time-independent imaginary complexity, time-dependent combinatorial complexity, and time-dependent periodic complexity. Industrial case studies. This course studies what makes a good design and how one develops a good design. Students consider how the design of engineered systems (such as hardware, software, materials, and manufacturing systems) differ from the "design" of natural systems such as biological systems; discuss complexity and how one makes use of complexity theory to improve design; and discover how one uses axiomatic design theory (AD theory) in design of many different kinds of engineered systems. Questions are analyzed using Axiomatic Design Theory and Complexity Theory. Case studies are presented including the design of machines, tribological systems, materials, manufacturing systems, and recent inventions. Implications of AD and complexity theories on biological systems discussed.
Quantitative techniques for life cycle analysis of the impacts of materials extraction, …
Quantitative techniques for life cycle analysis of the impacts of materials extraction, processing use, and recycling; and economic analysis of materials processing, products, and markets. Student teams undertake a major case study of automobile manufacturing using the latest methods of analysis and computer-based models of materials process.
Our linked subjects are (1) the historical process by which the meaning …
Our linked subjects are (1) the historical process by which the meaning of technology has been constructed, and (2) the concurrent transformation of the environment. To explain the emergence of technology as a pivotal word (and concept) in contemporary public discourse, we will examine responses--chiefly political and literary--to the development of the mechanic arts, and to the linked social, cultural, and ecological transformation of 19th- and 20th-century American society, culture, and landscape.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.