In this activity, the students will use wax paper shaped as leaves …
In this activity, the students will use wax paper shaped as leaves and kite string to build a shelter to protect them from the rain. The students will then test the shelters for durability and water resistance.
Students review the what they have learned throughout the five lessons in …
Students review the what they have learned throughout the five lessons in this unit. This includes a review of many types of engineers, reminding students of the various everyday products, structures and processes they design and create in our world.
Frances Gabe detested housework, so she invented a contraption to free herself …
Frances Gabe detested housework, so she invented a contraption to free herself from this tedious task forever: a self-cleaning house! Gabe's wacky, wonderful home included almost 70 new patented inventions, from a soap-spraying sprinkler in the ceiling to a kitchen cabinet that washed, dried, and stored dishes all in one place. Though Gabe's invention didn't catch on, her determination and clever thinking remind us that we don't have to accept the world as it is; we can improve it using our minds and our own two hands. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Frances Gabe created over 70 inventions because she hated cleaning. What is one thing you hate doing for chores? Develop an invention to have it clean itself.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
Students are introduced to a challenge question. Towards answering the question, they …
Students are introduced to a challenge question. Towards answering the question, they generate ideas for what they need to know about medicines and how they move through our bodies, watch a few short videos to gain multiple perspectives, and then learn lecture material to obtain a basic understanding of how antibiotics kill bacteria in the human body. They learn why different forms of medicine (pill, liquid or shot) get into the blood stream at different speeds.
Students teams determine the size of the caverns necessary to house the …
Students teams determine the size of the caverns necessary to house the population of the state of Alabraska from the impending asteroid impact. They measure their classroom to determine area and volume, determine how many people the space could sleep, and scale this number up to accommodate all Alabraskans. They work through problems on a worksheet and perform math conversions between feet/meters and miles/kilometers.
Students learn that it is incorrect to believe that heavier objects fall …
Students learn that it is incorrect to believe that heavier objects fall faster than lighter objects. By close observation of falling objects, they see that it is the amount of air resistance, not the weight of an object, which determines how quickly an object falls.
While learning about volcanoes, magma and lava flows, students learn about the …
While learning about volcanoes, magma and lava flows, students learn about the properties of liquid movement, coming to understand viscosity and other factors that increase and decrease liquid flow. They also learn about lava composition and its risk to human settlements.
Students practice their multiplication skills using robots with wheels built from LEGO® …
Students practice their multiplication skills using robots with wheels built from LEGO® MINDSTORMS® NXT kits. They brainstorm distance travelled by the robots without physically measuring distance and then apply their math skills to correctly calculate the distance and compare their guesses with physical measurements. Through this activity, students estimate parameters other than by physically measuring them, practice multiplication, develop measuring skills, and use their creativity to come up with successful solutions.
Students measure the permeability of different types of soils, compare results and …
Students measure the permeability of different types of soils, compare results and realize the importance of size, voids and density in permeability response.
Students learn about the underlying engineering principals in the inner workings of …
Students learn about the underlying engineering principals in the inner workings of a simple household object -- the faucet. Students use the basic concepts of simple machines, force and fluid flow to describe the path of water through a simple faucet. Lastly, they translate this knowledge into thinking about how different designs of faucets also use these same concepts.
Students investigate different forms of hybrid engines as well as briefly conclude …
Students investigate different forms of hybrid engines as well as briefly conclude a look at the different forms of potential energy, which concludes the Research and Revise step of the legacy cycle. Students are introduced to basic circuit schematics and apply their understanding of the difference between series and parallel circuits to current research on hybrid cars.
Amy Guglielmo, Jacqueline Tourville, and Giselle Potter tell the story of autism …
Amy Guglielmo, Jacqueline Tourville, and Giselle Potter tell the story of autism advocate Dr. Temple Grandin’s childhood and her quest to experience the sensation of a hug. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Students will work to develop an assistive technology solution for people with autism. Alternatively, students may develop assistive technology solutions for students with differing abilities. Students are encouraged to work with peers in a local special education classroom to combine their love of technology and engineering to help positively influence their peers’ lives.
A document is included in the resources folder that lists the complete standards-alignment for this book activity.
In this lesson, students will learn how great navigators of the past …
In this lesson, students will learn how great navigators of the past stayed on course that is, the historical methods of navigation. The concepts of dead reckoning and celestial navigation are discussed.
This course is designed to provide both undergraduate and graduate students with …
This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a research-oriented project with a final written report and an oral presentation.
Maker Faire participants collaborate in ISKME's Design Lab, using digital stories and …
Maker Faire participants collaborate in ISKME's Design Lab, using digital stories and salvaged materials to design an innovative school of the future. The Design Lab features Makers Mauro ffortisimo Di Nucci's deconstructed piano and INKA Biospheric Systems' Vertical Garden; as well as Student and Teacher project examples that integrate art, science, sustainability, and green design inspire the creation of shareable open-source learning resources. This wiki page showcases photos and video from the Design Lab, open educational resources for teachers, and a step by step guide through the design process.
This wiki page documents the STEAM Design Challenge Activity ISKME facilitated during …
This wiki page documents the STEAM Design Challenge Activity ISKME facilitated during the SLANT Summer Institute at San Francisco Unified School District July 19-23, 2010.Participants designed prototypes for an arts integration project for students and posted their ideas on the wiki.
"The course is designed to provide a better understanding of the built …
"The course is designed to provide a better understanding of the built environment, globalization, the current financial crisis and the impact of these factors on the rapidly changing and evolving international architecture, engineering, construction fields. We will, hopefully, obtain a better understanding of how these forces of globalization and the current financial crisis are having an impact on the built environment and how they will affect firms and your future career opportunities. We will also identify, review and discuss best practices and lessons that can be learned from recent events. We will explore the "international built environment" in detail, examining how it functions and asking what are the managerial, entrepreneurial and professional opportunities, challenges and risks in it, especially growing crossover and multi-disciplinary opportunities; and we will seek to understand what makes this "built environment" so different from other sectors."
This course presents the fundamentals of object-oriented software design and development, computational …
This course presents the fundamentals of object-oriented software design and development, computational methods and sensing for engineering, and scientific and managerial applications. It cover topics, including design of classes, inheritance, graphical user interfaces, numerical methods, streams, threads, sensors, and data structures. Students use Java programming language to complete weekly software assignments. How is 1.00 different from other intro programming courses offered at MIT? 1.00 is a first course in programming. It assumes no prior experience, and it focuses on the use of computation to solve problems in engineering, science and management. The audience for 1.00 is non-computer science majors. 1.00 does not focus on writing compilers or parsers or computing tools where the computer is the system; it focuses on engineering problems where the computer is part of the system, or is used to model a physical or logical system. 1.00 teaches the Java programming language, and it focuses on the design and development of object-oriented software for technical problems. 1.00 is taught in an active learning style. Lecture segments alternating with laboratory exercises are used in every class to allow students to put concepts into practice immediately; this teaching style generates questions and feedback, and allows the teaching staff and students to interact when concepts are first introduced to ensure that core ideas are understood. Like many MIT classes, 1.00 has weekly assignments, which are programs based on actual engineering, science or management applications. The weekly assignments build on the class material from the previous week, and require students to put the concepts taught in the small in-class labs into a larger program that uses multiple elements of Java together.
An introduction to several fundamental ideas in electrical engineering and computer science, …
An introduction to several fundamental ideas in electrical engineering and computer science, using digital communication systems as the vehicle. The three parts of the course - bits, signals, and packets - cover three corresponding layers of abstraction that form the basis of communication systems like the Internet. The course teaches ideas that are useful in other parts of EECS: abstraction, probabilistic analysis, superposition, time and frequency-domain representations, system design principles and trade-offs, and centralized and distributed algorithms. The course emphasizes connections between theoretical concepts and practice using programming tasks and some experiments with real-world communication channels.
This course is an introductory subject in the field of electric power …
This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Electric power systems are also at the heart of alternative energy systems, including wind and solar electric, geothermal and small scale hydroelectric generation.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.