Updating search results...

Search Resources

417 Results

View
Selected filters:
  • engineering
Fluid Power Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder. Students learn background information about fluid power—both pneumatic and hydraulic systems—including everyday applications in our world (bulldozers, front-end loaders, excavators, chair height lever adjustors, door closer dampers, dental drills, vehicle brakes) and related natural laws. After a few simple teacher demos, they learn about the four components in all fluid power systems, watch two 26-minute online videos about fluid power, complete a crossword puzzle of fluid power terms, and conduct a task card exercise. This prepares them to conduct the associated hands-on activity, using the Portable Fluid Power Demonstrator (teacher-prepared kits) to learn more about the properties of gases and liquids in addition to how forces are transmitted and multiplied within these systems.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Bettag
John H. Lumkes
Jose Garcia
Nicki Schrank
Phong Pham
Date Added:
09/18/2014
Forces and Graphing
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this activity to explore forces acting on objects, practice graphing experimental data, and introduce the algebra concepts of slope and intercept of a line. A wooden 2 x 4 beam is set on top of two scales. Students learn how to conduct an experiment by applying loads at different locations along the beam, recording the exact position of the applied load and the reaction forces measured by the scales at each end of the beam. In addition, students analyze the experiment data with the use of a chart and a table, and model/graph linear equations to describe relationships between independent and dependent variables.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ivanka Todorova
Jed Lyons
John Brader
Veronica Addison
Date Added:
09/18/2014
Forces in 1 Dimension
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a Free Body Diagram of all the forces (including gravitational and normal forces).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Kathy Perkins
Sam Reid
Trish Loeblein
Date Added:
10/03/2006
Forces on the Human Molecule
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct several simple lab activities to learn about the five fundamental load types that can act on structures: tension, compression, shear, bending and torsion. In this activity, students play the role of molecules in a beam that is subject to various loading schemes.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Forms of Linear Equations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about four forms of equations: direct variation, slope-intercept form, standard form and point-slope form. They graph and complete problem sets for each, converting from one form of equation to another, and learning the benefits and uses of each.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Fourier: Making Waves
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Sam McKagan
Date Added:
10/02/2006
Frameworks and Models in Engineering Systems / Engineering System Design, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks."

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sussman, Joseph
Date Added:
01/01/2007
Free Engineering Technology Simulations
Unrestricted Use
CC BY
Rating
0.0 stars

FREE TO USE
Each simulation can be embedded into your online courses or used in the classroom. Use, Modify, or Share for free under the Creative Commons license.

ENGINEER FOCUSED
Learning simulations covering Automation & Robotics, Electrical & Motor Control, Process Control or Renewable Energy.

INSTRUCTOR APPROVED
Each simulation is created with the help of a real engineering instructor. The concepts are designed with students in mind.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Interactive
Author:
https://ateec.org/
Date Added:
02/09/2021
Friction Force
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
Frogger (Day 1)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Objective
SWBAT identify a problem within the environment and brainstorm, develop, and present models that can serve as solutions to the problem.

Big Idea
In this lesson students build models to help prevent frogger from become a hazard in the real world.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Lesson Plan
Author:
Jennifer Smith
Date Added:
06/18/2021
Frogger (Day 3)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Objective
SWBAT utilize criteria and constraints rubrics when working on an engineering project and identify scientific principles of building.

Big Idea
It is great to dream big, but engineers also have to follow guidelines and meet specific criteria. Use this lesson to help your students stay in touch with reality.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Author:
Jennifer Smith
Date Added:
06/16/2021
Frogger (Day 4)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Objective
SWBAT explain their engineering choices and ask appropriate questions about their classmates' projects.

Big Idea
In this lesson, students present and explain their final products for the Frogger project and ask thoughtful scientific questions as audience members.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Author:
Jennifer Smith
Date Added:
06/18/2021
From Sunlight to Electric Current
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson will first explore the concept of current in electrical circuits. Current will be defined as the flow of electrons. Photovoltaic (PV) cell properties will then be introduced. Generally constructed of silicon, photovoltaic cells contain a large number of electrons BUT they can be thought of as "frozen" in their natural state. A source of energy is required to "free" these electrons if we wish to create current. Light from the sun provides this energy. This will lead to the principle of "Conservation of Energy." Finally, with a basic understanding of the circuits through Ohm's law, students will see how the energy from the sun can be used to power everyday items, including vehicles. This lesson utilizes the engineering design activity of building a solar car to help students learn these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rahmin Sarabi
Date Added:
09/18/2014
Full Steam Ahead: The Steam Engine and Transportation in the Nineteenth Century
Unrestricted Use
CC BY
Rating
0.0 stars

This collection uses primary sources to explore the steam engine and transportation in the nineteenth century. Digital Public Library of America Primary Source Sets are designed to help students develop their critical thinking skills and draw diverse material from libraries, archives, and museums across the United States. Each set includes an overview, ten to fifteen primary sources, links to related resources, and a teaching guide. These sets were created and reviewed by the teachers on the DPLA's Education Advisory Committee.

Subject:
History
U.S. History
Material Type:
Primary Source
Provider:
Digital Public Library of America
Provider Set:
Primary Source Sets
Author:
Samantha Gibson
Date Added:
04/11/2016
Full of Beans Resouces - Promoting STEM Through Literature (PSTL)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After the Great Depression struck, Ford especially wanted to support ailing farmers. For two years, Ford and his team researched ways to use farmers’ crops in his Ford Motor Company. They discovered that the soybean was the perfect answer. Soon, Ford’s cars contained many soybean plastic parts, and Ford incorporated soybeans into every part of his life. He ate soybeans, he wore clothes made of soybean fabric, and he wanted to drive soybeans, too. The resource includes a lesson plan/book card, a design challenge, and copy of a design thinking journal that provide guidance on using the book to inspire students' curiosity for design thinking. Maker Challenge: Think about the people in your community and the challenges they face. List three challenges that affect their daily life. Consider something you use every day and brainstorm how it could be repurposed or modified to address this problem.

A document is included in the resources folder that lists the complete standards-alignment for this book activity.

Subject:
Applied Science
Arts and Humanities
English Language Arts
Mathematics
Reading Literature
Social Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
REMC Association of Michigan
Provider Set:
Promoting STEM in Literature
Author:
REMC Association of Michigan
Date Added:
07/12/2020
Fundamentals of Energy in Buildings, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This design-based subject provides a first course in energy and thermo-sciences with applications to sustainable energy-efficient architecture and building technology. No previous experience with subject matter is assumed. After taking this subject, students will understand introductory thermodynamics and heat transfer, know the leading order factors in building energy use, and have creatively employed their understanding of energy fundamentals and knowledge of building energy use in innovative building design projects. This year, the focus will be on design projects that will complement the new NSTAR/MIT campus efficiency program.

Subject:
Applied Science
Architecture and Design
Ecology
Education
Educational Technology
Engineering
Environmental Science
Forestry and Agriculture
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Glicksman, Leon
Glicksman, Leon R
Date Added:
01/01/2010
GPS on the Move
Read the Fine Print
Educational Use
Rating
0.0 stars

During a scavenger hunt and an art project, students learn how to use a handheld GPS receiver for personal navigation. Teachers can request assistance from the Institute of Navigation to find nearby members with experience in using GPS and in locating receivers to use.

Subject:
Applied Science
Ecology
Engineering
Forestry and Agriculture
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Penny Axelrad
Date Added:
09/18/2014
Gas Properties
Unrestricted Use
CC BY
Rating
0.0 stars

Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Jack Barbera
Kathy Perkins
Linda Koch
Michael Dubson
Ron LeMaster
Date Added:
10/05/2006
Getting it Right!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will investigate error. As shown in earlier activities from navigation lessons 1 through 3, without an understanding of how errors can affect your position, you cannot navigate well. Introducing accuracy and precision will develop these concepts further. Also, students will learn how computers can help in navigation. Often, the calculations needed to navigate accurately are time consuming and complex. By using the power of computers to do calculations and repetitive tasks, one can quickly see how changing parameters likes angles and distances and introducing errors will affect their overall result.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Trigonometry
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
09/18/2014
Getting to the Point
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn how to determine location by triangulation. We describe the process of triangulation and practice finding your location on a worksheet, in the classroom, and outdoors.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
09/18/2014